...
首页> 外文期刊>Mechanical systems and signal processing >Counterbalance of cutting force for advanced milling operations
【24h】

Counterbalance of cutting force for advanced milling operations

机译:先进铣削操作中的切削力平衡

获取原文
获取原文并翻译 | 示例
           

摘要

The goal of this work is to concurrently counterbalance the dynamic cutting force and regulate the spindle position deviation under various milling conditions by integrating active magnetic bearing (AMB) technique, fuzzy logic algorithm and an adaptive self-tuning feedback loop. Since the dynamics of milling system is highly determined by a few operation conditions, such as speed of spindle, cut depth and feedrate, therefore the dynamic model for cutting process is more appropriate to be constructed by experiments, instead of using theoretical approach. The experimental data, either for idle or cutting, are utilized to establish the database of milling dynamics so that the system parameters can be on-line estimated by employing the proposed fuzzy logic algorithm as the cutting mission is engaged. Based on the estimated milling system model and preset operation conditions, i.e., spindle speed, cut depth and feedrate, the current cutting force can be numerically estimated. Once the current cutting force can be real-time estimated, the corresponding compensation force can be exerted by the equipped AMB to counterbalance the cutting force, in addition to the spindle position regulation by feedback of spindle position. On the other hand, for the magnetic force is nonlinear with respect to the applied electric current and air gap, the characteristics of the employed AMB is investigated also by experiments and a nonlinear mathematic model, in terms of air gap between spindle and electromagnetic pole and coil current, is developed. At the end, the experimental simulations on realistic milling are presented to verify the efficacy of the fuzzy controller for spindle position regulation and the capability of the dynamic cutting force counterbalance.
机译:这项工作的目的是通过集成主动电磁轴承(AMB)技术,模糊逻辑算法和自适应自调整反馈回路,在各种铣削条件下同时抵消动态切削力并调节主轴位置偏差。由于铣削系统的动力学在很大程度上取决于主轴转速,切削深度和进给率等几种操作条件,因此切削过程的动力学模型更适合通过实验构建,而不是使用理论方法。利用闲置或切削的实验数据建立铣削动力学数据库,以便在进行切削任务时通过采用所提出的模糊逻辑算法可以在线估计系统参数。基于估算的铣削系统模型和预设的运行条件(即主轴速度,切削深度和进给速度),可以用数字估算当前的切削力。一旦可以实时估算当前切削力,除了通过主轴位置反馈调节主轴位置外,配备的AMB还可施加相应的补偿力来抵消切削力。另一方面,由于磁力相对于施加的电流和气隙是非线性的,因此还通过实验和非线性数学模型研究了所使用的AMB的特性,包括主轴和电磁极之间的气隙以及线圈电流已开发。最后,通过仿真实验验证了模糊控制器对主轴位置调节的有效性以及动态切削力平衡的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号