...
首页> 外文期刊>Microelectronic Engineering >Fabrication method of lab-on-PCB devices using a microheater with a thermo-mechanical barrier
【24h】

Fabrication method of lab-on-PCB devices using a microheater with a thermo-mechanical barrier

机译:使用带有热机械屏障的微型加热器制造PCB实验室设备的方法

获取原文
获取原文并翻译 | 示例
           

摘要

A thermal method for bonding thermoplastics with a printed circuit board has been developed for its use in Lab on Chip applications. In order to define and control the bonded zones of the device, a thermo-mechanical barrier is included. The thermoplastic used is polymethylmethacrylate (PMMA), and the substrate is a double-side PCB. The copper layer is used to fabricate simultaneously a microheater and the thermomechanical barrier by wet etching, and the piece of PMMA used is micromilled before its bonding to the PCB. Once the PCB and the piece of PMMA are processed, a good alignment of both parts is important. After that, a controlled current is applied by a power supply in order to increase the temperature of the microheater. Time needed for bonding is predicted by numerical simulations of the whole system. As an example of a possible application of this procedure, the proposed method is applied to fabricate a two-dimensional hydrodynamic focusing device. This device has been tested showing an appropriate behaviour. The dimensions of the generated streams lie between 81 and 224 mu m showing a good correspondence with the theory. In addition, the device presents a correct functioning, without leakages demonstrating that the bonding is good. The presented method has been studied in order to characterize the maximum pressure the whole device is able to withstand. In this case, the materials used withstand 481 kPa. This method can be easily extended to industrial production of microfluidic devices, such as lab on chips and gTAS. (C) 2018 Elsevier B.V. All rights reserved.
机译:已经开发了一种将热塑性塑料与印刷电路板粘合的热方法,以用于芯片实验室应用。为了定义和控制设备的结合区域,包括了热机械屏障。所使用的热塑性塑料是聚甲基丙烯酸甲酯(PMMA),基材是双面PCB。铜层用于通过湿法刻蚀同时制造微型加热器和热机械屏障,并且在将其粘合到PCB之前,对所用的PMMA进行微研磨。一旦处理完了PCB和一块PMMA,两个部分的良好对准就很重要。之后,通过电源施加受控电流以提高微加热器的温度。粘合所需的时间通过整个系统的数值模拟来预测。作为该程序的可能应用的示例,所提出的方法被应用于制造二维流体动力聚焦装置。该设备已经过测试,显示出适当的行为。所产生的流的尺寸在81至224μm之间,这与理论相符。另外,该装置表现出正确的功能,而没有泄漏表明粘合良好。为了确定整个设备能够承受的最大压力,已对提出的方法进行了研究。在这种情况下,所使用的材料可承受481 kPa。这种方法可以轻松地扩展到微流体设备的工业生产,例如芯片实验室和gTAS。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号