...
首页> 外文期刊>Microelectronic Engineering >Degradation and stability of nanostructured energy devices
【24h】

Degradation and stability of nanostructured energy devices

机译:纳米结构能量器件的降解和稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Nanomaterials can be employed in a variety of energy technologies to improve performance, reduce costs, and open up new applications such as microelectronics. The necessary functionalities for the energy processes (e.g. energy conversion or energy storage) are achieved through organizing these materials into complex nanostructures combined with supporting substances to complete these processes. Key functionalities accomplished in this way often include charge transfer processes. The stability of the nano-energy devices is a key factor affecting both their technical and economic viability. In this paper we discuss procedures for identifying degradation phenomena in nano-energy devices and present results from stability studies of metal oxide-based nanomaterials for dye-sensitized solar cells (DSSC) and ceramic fuel cells (CFC) relevant to microelectronics. DSSC stability study is based on TiO_2 nanostruc-ture and CFC is based on samarium doped ceria (SDC)/carbonate nanocomposite. Analyses included morphological and electrochemical characterization. Degradation had a major impact on the charge transfer processes and on the overall energy conversion efficiency through the material interfaces. As DSSC and SDC-nanocomposite fuel cell are electrochemical devices, ion mobility linked to side reactions that weakens the original redox-reactions were found, in particular through the electrolyte, but also on material interfaces (e.g. electrode-electrolyte, core-shell particle interface) where catalytic activity is an important performance enhancing factor. When scaling up materials to the energy device level, the manufacturing method itself may also cause instabilities in the nanostructures.
机译:纳米材料可用于多种能源技术中,以提高性能,降低成本并开拓微电子等新应用。通过将这些材料组织成复杂的纳米结构并结合支持物质来完成这些过程,可以实现能量过程的必要功能(例如,能量转换或能量存储)。以这种方式完成的关键功能通常包括电荷转移过程。纳米能量装置的稳定性是影响其技术和经济可行性的关键因素。在本文中,我们讨论了识别纳米能量设备中降解现象的程序,并提供了与染料敏化太阳能电池(DSSC)和与微电子相关的陶瓷燃料电池(CFC)的基于金属氧化物的纳米材料的稳定性研究结果。 DSSC稳定性研究基于TiO_2纳米结构,CFC基于is掺杂的二氧化铈(SDC)/碳酸盐纳米复合材料。分析包括形态学和电化学表征。降解对电荷转移过程以及通过材料界面的整体能量转换效率产生重大影响。由于DSSC和SDC纳米复合燃料电池是电化学装置,因此发现与副反应相关的离子迁移率减弱了原始的氧化还原反应,特别是通过电解质,而且还存在于材料界面(例如电极-电解质,核-壳粒子界面)上),其中催化活性是重要的性能增强因素。当将材料按比例放大至能量装置水平时,制造方法本身也可能导致纳米结构的不稳定性。

著录项

  • 来源
    《Microelectronic Engineering》 |2014年第8期|49-53|共5页
  • 作者单位

    New Energy Technologies Group, Department of Applied Physics, Aalto University, P.O. BOX 14100, FI-00076 Aalto, Espoo, Finland;

    New Energy Technologies Group, Department of Applied Physics, Aalto University, FI-00076 Aalto, Espoo, Finland;

    New Energy Technologies Group, Department of Applied Physics, Aalto University, FI-00076 Aalto, Espoo, Finland;

    New Energy Technologies Group, Department of Applied Physics, Aalto University, FI-00076 Aalto, Espoo, Finland;

    New Energy Technologies Group, Department of Applied Physics, Aalto University, FI-00076 Aalto, Espoo, Finland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nano-energy devices; Solar cells; Fuel cells; Degradation; Nanostructured materials;

    机译:纳米能源设备;太阳能电池;燃料电池;降解;纳米结构材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号