...
首页> 外文期刊>Microelectronic Engineering >Microstructuring of glassy carbon mold for glass embossing - Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining
【24h】

Microstructuring of glassy carbon mold for glass embossing - Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining

机译:用于玻璃压花的玻璃碳模具的微结构-聚焦离子束,纳米/飞秒脉冲激光和机械加工的比较

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Various methods, including focused ion beam (FIB), femto-second laser, KrF eximer laser and dicing techniques, were employed for preparing glassy carbon (GC) micro-molds, and those methods were characterized in terms of the process rate, the roughness and the shape of machined structure. FIB milling using a repetitive pass method produced nano/microstructures with flat channel bottom and nearly vertical sidewalls. Although FIB milling was slowest process, it provided the best quality of machined surface (R_a = 4—30 nm depended on milled depth). Femtosecond-pulsed laser machining also allowed fabricating flat bottom and nearly vertical sidewalls on an area of 1.2 x 1.2 mm~2 at a scanning speed of 20 mm/s, but lead to an increase of the surface roughness (R_a = 80 nm). Femto-second laser in combination with FIB milling provided a possibility for the rapid fabrication of high quality microstructures on wide surface area. The roughness of machined surface decreased to 45 nm by the subsequent FIB milling. Microstructuring with a nanosecond-pulsed KrF eximer laser at an irradiation wavelength of 248 nm with a fluence of 13.2 J/cm~2 also allowed the fast fabrication of master structure for micro-gear, resulted in slanted sidewalls and not ideally flat bottoms. The surface roughness (R_a) of the bottom and the side wall was about 45 and 70 nm, respectively. Dicing technique allowed machining micro-channels with a rectangular and pyramidal cross-section on an area of 15 x 15 mm~2 under the feed speed of 50 mm/min. By reducing the feeding speed from 100 mm/min to 50 mm/min, surface roughness (R_a) of the structure side wall decreased from 150 nm to 70 nm. Achieved glassy carbon molds were then applied to the hot-emboss process of Pyrex and quartz glasses to investigate embossing conditions (emboss temperature, pressure and hold time) needed for the replication of Pyrex and quartz glass structures with various geometries and dimensions in glass plates with thickness of 1 mm. Replication results showed good replication at the nanoscale, resulted in the almost the same dimensions and surface roughness with that of cavities. Thicker plate provided faster filling in the emboss process of glass.
机译:采用聚焦离子束(FIB),飞秒激光,KrF准分子激光和切割技术等各种方法制备玻璃碳(GC)微模具,并根据加工速率,粗糙度对这些方法进行了表征。以及加工结构的形状。使用重复通过方法进行的FIB铣削产生的纳米/微结构具有平坦的通道底部和近乎垂直的侧壁。尽管FIB铣削是最慢的过程,但它提供了最佳的加工表面质量(R_a = 4-30 nm取决于铣削深度)。飞秒脉冲激光加工还允许以20 mm / s的扫描速度在1.2 x 1.2 mm〜2的面积上制造平坦的底部和几乎垂直的侧壁,但导致表面粗糙度增加(R_a = 80 nm)。飞秒激光与FIB铣削相结合,为在宽表面积上快速制造高质量微结构提供了可能性。通过随后的FIB铣削,加工表面的粗糙度降至45 nm。用纳秒级脉冲KrF准分子激光在248 nm的照射波长下以13.2 J / cm〜2的注量进行微结构化,还可以快速制造用于微齿轮的主结构,从而导致侧壁倾斜而不是理想的平坦底部。底部和侧壁的表面粗糙度(R_a)分别为约45和70nm。切块技术允许以50 mm / min的进给速度在15 x 15 mm〜2的面积上加工具有矩形和金字塔形横截面的微通道。通过将进给速度从100mm / min降低至50mm / min,结构侧壁的表面粗糙度(R_a)从150nm降低至70nm。然后将获得的玻璃碳模具应用于Pyrex和石英玻璃的热压工艺,以研究在玻璃板中复制各种几何形状和尺寸的Pyrex和石英玻璃结构所需的压花条件(压花温度,压力和保持时间)。厚度为1毫米。复制结果显示出在纳米级的良好复制,导致与腔几乎相同的尺寸和表面粗糙度。较厚的板可在玻璃压花过程中提供更快的填充速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号