首页> 外文期刊>Marine technology and SNAME news >Inclusion of Whisker Spray Drag in Performance Prediction Method for High-Speed Planing Hulls
【24h】

Inclusion of Whisker Spray Drag in Performance Prediction Method for High-Speed Planing Hulls

机译:晶须喷雾阻力纳入高速滑行船体性能预测方法中

获取原文
获取原文并翻译 | 示例
           

摘要

The planing hull performance prediction method published by Savitsky in the October 1964 issue of SNAME's Marine Technology included only the viscous drag and pressure drag components in the bottom area aft of the stagnation line. While discussing the existence of an additional component of viscous drag in the whisker spray region forward of the stagnation line, a method to quantify this drag component was not developed in Savitsky (1964). Earlier studies by Savitsky and Ross (1952) and Savitsky and Neidinger (1954) discuss the potential whisker spray drag component but do not present a complete analytical derivation of its magnitude nor verification of the results by comparison with experimental data. The present study fills this void by developing a method for quantifying the whisker spray contribution to total hull resistance as a function of deadrise angle, trim angle, and speed, and incorporating the results into the SNAME published hull performance prediction method. The analytical results are compared with data from model tests conducted at three separate towing tank facilities and show fairly good agreement with these data. It is shown that for high-speed planing hulls, the whisker spray drag component can be as much as 15% of the total drag. In addition, (1) procedures are provided for the proper location, size, and geometry of spray strips to deflect the whisker spray away from the hull bottom; (2) the aerodynamic drag of the hull cross-sectional area above the waterline is also quantified and included in the final performance prediction method; and (3) the equilibrium trim angle identified in the prediction program (for prismatic hull forms) is, for nonprismatic hulls, related to the trim angle of the 1/4 buttock line (relative to the level water surface) when measured at the forward edge of the mean wetted length.
机译:Savitsky在1964年10月出版的SNAME的Marine Technology上发布的滑行船体性能预测方法仅包括在停滞线后部底部的粘性阻力和压力阻力分量。在讨论滞流线前面的晶须喷雾区域中是否存在粘性阻力的附加成分时,Savitsky(1964)尚未开发出量化此阻力成分的方法。 Savitsky和Ross(1952)以及Savitsky和Neidinger(1954)的早期研究讨论了晶须喷雾阻力的潜在成分,但没有提供其幅度的完整分析推导,也没有通过与实验数据进行比较来验证结果。本研究通过开发一种方法来量化晶须喷雾对总船体阻力的影响,该值是死角,纵倾角和速度的函数,并将结果纳入SNAME发表的船体性能预测方法中,从而填补了这一空白。将分析结果与在三个单独的拖油罐设施进行的模型测试数据进行了比较,显示出与这些数据相当吻合。结果表明,对于高速滑行船体,晶须喷雾阻力分量可占总阻力的15%之多。此外,(1)提供了适当程序,喷雾条的位置,大小和几何形状,以使晶须喷雾偏离船体底部; (2)还量化了吃水线以上的船体横截面积的空气动力阻力,并将其包括在最终性能预测方法中; (3)对于非棱形船体,在预测程序中确定的平衡纵倾角(对于棱柱形船体)与在前向测量时的1/4臀围线的纵倾角(相对于水平面)相关。平均润湿长度的边缘。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号