首页> 外文期刊>Nanobiotechnology, IET >AC electrical characterisation and insight to charge transfer mechanisms in DNA molecular wires through temperature and UV effects
【24h】

AC electrical characterisation and insight to charge transfer mechanisms in DNA molecular wires through temperature and UV effects

机译:交流电表征,并通过温度和紫外线效应了解DNA分子线中的电荷转移机制

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, AC characterisation of DNA molecular wires, effects of frequency, temperature and UV irradiation on their conductivity is presented. λ-DNA molecular wires suspended between high aspect-ratio electrodes exhibit highly frequency-dependent conductivity that approaches metal-like behaviour at high frequencies (~MHz). Detailed temperature dependence experiments were performed that traced the impedance response of λ-DNA until its denaturation. UV irradiation experiments where conductivity was lost at higher and longer UV exposures helped to establish that it is indeed λ-DNA molecular wires that generate conductivity. The subsequent renaturation of λ-DNA resulted in the recovery of current conduction, providing yet another proof of the conducting DNA molecular wire bridge. The temperature results also revealed hysteretic and bi-modal impedance responses that could make DNA a candidate for nanoelectronics components like thermal transistors and switches. Further, these experiments shed light on the charge transfer mechanism in DNA. At higher temperatures, the expected increase in thermal-induced charge hopping may account for the decrease in impedance supporting the `charge hopping mechanism' theory. UV light, on the other hand, causes damage to GC base-pairs and phosphate groups reducing the path available both for hopping and short-range tunneling mechanisms, and hence increasing impedance - this again supporting both the `charge hopping' and `tunneling' mechanism theories.
机译:在这项研究中,提出了DNA分子线的AC表征,频率,温度和紫外线辐射对其电导率的影响。悬在高长宽比电极之间的λ-DNA分子线表现出高度依赖于频率的电导率,在高频(〜MHz)时接近金属样的行为。进行了详细的温度依赖性实验,该实验追踪了λ-DNA的变性直至变性。在较高和更长的紫外线照射下会失去导电性的紫外线照射实验有助于确定产生导电性的确实是λ-DNA分子线。随后的λ-DNA复性导致电流传导的恢复,为传导DNA分子线桥提供了又一证明。温度结果还揭示了磁滞和双峰阻抗响应,这些响应可能使DNA成为热敏晶体管和开关等纳米电子组件的候选者。此外,这些实验揭示了DNA中的电荷转移机理。在较高的温度下,热感应电荷跳跃的预期增加可能是支持“电荷跳跃机制”理论的阻抗下降的原因。另一方面,紫外线会损坏GC碱基对和磷酸酯基团,从而减少了跳变和短程隧穿机制的可用路径,从而增加了阻抗-这又支持了“电荷跳变”和“隧穿”机制理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号