首页> 外文期刊>Nature >Room-temperature nine-μm-wavelength photo-detectors and GHz-frequency heterodyne receivers
【24h】

Room-temperature nine-μm-wavelength photo-detectors and GHz-frequency heterodyne receivers

机译:室温9μm波长光电探测器和GHz频率外差接收机

获取原文
获取原文并翻译 | 示例
           

摘要

Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging(1), which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres(2), and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication(3-5), have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation(6,7). Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector(8) fabricated from a metamaterial made of sub-wavelength metallic resonators(9-12) exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device(13). Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature(14,15), which constrains conventional geometries at cryogenic operation(6). Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector(7) at room temperature. By mixing the frequencies of two quantum-cascade lasers(16) on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer(17) and high-precision molecular spectroscopy(18).
机译:对于任何旨在为广泛应用提供低成本,紧凑型系统的光电技术,室温操作都是必不可少的。在此方向上的最新技术进展是用于热成像的辐射热检测(1),它在室温下已实现了相对较高的灵敏度和视频速率(约60赫兹)。但是,由于热感应暗电流的影响,室温操作对于目标波长在8到12微米之间的半导体光电探测器(2)以及所有相关应用(例如成像,环境遥感和基于激光的应用)仍然是巨大的挑战在低温下已经实现了自由空间通信(3-5)。对于这些设备,高灵敏度和高速度从未与高温操作兼容(6,7)。在这里,我们显示了由亚波长金属谐振器(9-12)制成的超材料制成的长波长(9微米)红外量子阱光电探测器(8)相对于现有技术,其性能得到了显着增强。室内温度。发生这种情况是因为每个谐振器的光子收集面积远大于其电面积,因此大大降低了设备的暗电流(13)。此外,我们表明,我们的光子架构克服了材料的固有局限性,例如电子漂移速度随温度下降(14,15),这限制了低温运行时的常规几何形状(6)。最后,减小的设备物理面积及其增加的响应度使我们能够利用量子检测器(7)在室温下的固有高频响应。通过在探测器上混合两个量子级联激光器(16)的频率,该探测器用作外差接收器,我们测量了一个高于4 GHz(GHz)的高频信号。因此,这些宽带非制冷检测器可能会受益于诸如高速(千兆比特/秒)多通道相干数据传输(17)和高精度分子光谱(18)之类的技术。

著录项

  • 来源
    《Nature》 |2018年第7699期|85-88|共4页
  • 作者单位

    Univ Paris Diderot, CNRS, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite,UMS 7162, F-75013 Paris, France;

    Univ Paris Diderot, CNRS, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite,UMS 7162, F-75013 Paris, France;

    Univ Paris Diderot, CNRS, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite,UMS 7162, F-75013 Paris, France;

    Univ Paris Diderot, CNRS, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite,UMS 7162, F-75013 Paris, France;

    Univ Paris Diderot, CNRS, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite,UMS 7162, F-75013 Paris, France;

    Univ Paris Diderot, CNRS, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite,UMS 7162, F-75013 Paris, France;

    Univ Paris Diderot, CNRS, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite,UMS 7162, F-75013 Paris, France;

    Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England;

    Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England;

    Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England;

    ETH, Inst Quantum Elect, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland;

    ETH, Inst Quantum Elect, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland;

    ETH, Inst Quantum Elect, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland;

    Univ Paris Diderot, CNRS, Lab Mat & Phenomenes Quant, Sorbonne Paris Cite,UMS 7162, F-75013 Paris, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号