首页> 外文期刊>Nature >Heterointerface effects in the electrointercalation of van der Waals heterostructures
【24h】

Heterointerface effects in the electrointercalation of van der Waals heterostructures

机译:范德华异质结构电嵌入中的异质界面效应

获取原文
获取原文并翻译 | 示例
           

摘要

Molecular-scale manipulation of electronic and ionic charge accumulation in materials is the backbone of electrochemical energy storagel(1-4). Layered van der Waals (vdW) crystals are a diverse family of materials into which mobile ions can electrochemically intercalate into the interlamellar gaps of the host atomic lattice(5,6). The structural diversity of such materials enables the interfacial properties of composites to be optimized to improve ion intercalation for energy storage and electronic devices(7-12). However, the ability of heterolayers to modify intercalation reactions, and their role at the atomic level, are yet to be elucidated. Here we demonstrate the electrointercalation of lithium at the level of individual atomic interfaces of dissimilar vdW layers. Electrochemical devices based on vdW heterostructures(13) of stacked hexagonal boron nitride, graphene and molybdenum dichalcogenide (MoX2;X=S, Se) layers are constructed. We use transmission electron microscopy, in situ magnetoresistance and optical spectroscopy techniques, as well as low-temperature quantum magneto-oscillation measurements and ab initio calculations, to resolve the intermediate stages of lithium intercalation at heterointerfaces. The formation of vdW heterointerfaces between graphene and MoX2 results in a more than tenfold greater accumulation of charge in MoX2 when compared to MoX2/MoX2 homointerfaces, while enforcing a more negative intercalation potential than that of bulk MoX2 by at least 0.5 V. Beyond energy storage, our combined experimental and computational methodology for manipulating and characterizing the electrochemical behaviour of layered systems opens new pathways to control the charge density in two-dimensional electronic and optoelectronic devices.
机译:材料中电子和离子电荷积累的分子规模操纵是电化学储能的基础(1〜4)。层状范德华(vdW)晶体是一类多样的材料,其中的移动离子可以电化学插入到主体原子晶格的层间间隙中(5,6)。这种材料的结构多样性使复合材料的界面性能得以优化,从而改善了用于能量存储和电子设备的离子插层(7-12)。然而,尚未阐明异质层修饰嵌入反应的能力及其在原子水平上的作用。在这里,我们证明了锂在不同vdW层的各个原子界面水平上的电嵌入。构造了基于堆叠的六方氮化硼,石墨烯和二硫化钼钼(MoX2; X = S,Se)层的vdW异质结构(13)的电化学装置。我们使用透射电子显微镜,原位磁阻和光谱技术,以及低温量子磁振荡测量和从头算,来解决异质界面锂嵌入的中间阶段。与MoX2 / MoX2均质界面相比,石墨烯与MoX2之间的vdW异质界面的形成导致MoX2中的电荷积累高十倍以上,同时比整体MoX2的负嵌入势能至少强0.5 V. ,我们结合实验和计算方法论来操纵和表征分层系统的电化学行为,为控制二维电子和光电设备中的电荷密度开辟了新途径。

著录项

  • 来源
    《Nature》 |2018年第7710期|425-429|共5页
  • 作者单位

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    Howard Univ, Dept Elect Engn, Washington, DC 20059 USA;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan;

    Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan;

    Howard Univ, Dept Chem Engn, Washington, DC 20059 USA;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

    Harvard Univ, Dept Phys, Cambridge, MA 02138 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号