首页> 外文期刊>Nature >Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices
【24h】

Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices

机译:金属纳米粒子触点,用于高产量,环境稳定的分子单层设备

获取原文
获取原文并翻译 | 示例
           

摘要

Accessing the intrinsic functionality of molecules for electronic applications(1-3), light emission(4) or sensing(5) requires reliable electrical contacts to those molecules. A self-assembled monolayer (SAM) sandwich architecture(6) is advantageous for technological applications, but requires a non-destructive, top-contact fabrication method. Various approaches ranging from direct metal evaporation(6) over poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(7) (PEDOT: PSS) or graphene(8) interlayers to metal transfer printing(9) have been proposed. Nevertheless, it has not yet been possible to fabricate SAM-based devices without compromising film integrity, intrinsic functionality or mass-fabrication compatibility. Here we develop a top-contact approach to SAM-based devices that simultaneously addresses all these issues, by exploiting the fact that a metallic nanoparticle can provide a reliable electrical contact to individual molecules(10). Our fabrication route involves first the conformal and non-destructive deposition of a layer of metallic nanoparticles directly onto the SAM (itself laterally constrained within circular pores in a dielectric matrix, with diameters ranging from 60 nanometres to 70 micrometres), and then the reinforcement of this top contact by direct metal evaporation. This approach enables the fabrication of thousands of identical, ambientstable metal-molecule-metal devices. Systematic variation of the composition of the SAM demonstrates that the intrinsic molecular properties are not affected by the nanoparticle layer and subsequent top metallization. Our concept is generic to densely packed layers of molecules equipped with two anchor groups, and provides a route to the large-scale integration of molecular compounds into solid-state devices that can be scaled down to the single-molecule level.
机译:访问分子在电子应用(1-3),发光(4)或传感(5)的固有功能时,需要与这些分子进行可靠的电接触。自组装单层(SAM)夹心结构(6)对于技术应用而言是有利的,但是需要一种无损的顶部接触制造方法。有人提出了各种方法,从直接在聚(3,4-乙撑二氧噻吩)聚苯乙烯磺酸盐(7)(PEDOT:PSS)或石墨烯(8)中间层上进行金属蒸发(6)到金属转移印刷(9)。然而,在不损害薄膜完整性,固有功能或大规模制造兼容性的情况下,仍不可能制造基于SAM的器件。在这里,我们利用金属纳米粒子可以为单个分子提供可靠的电接触这一事实,开发出一种基于SAM的设备的顶部接触方法,该方法同时解决了所有这些问题(10)。我们的制造路线包括首先将金属纳米颗粒层以保形和非破坏性方式直接沉积到SAM上(其自身横向约束在电介质基质的圆形孔中,直径范围从60纳米到70微米),然后增强该顶部接触是通过直接金属蒸发。这种方法可以制造成千上万个相同的,环境稳定的金属分子金属器件。 SAM组成的系统变化表明,固有的分子特性不受纳米颗粒层和后续顶部金属化的影响。我们的概念对于装备有两个锚定基团的分子的密集堆积层是通用的,并提供了将分子化合物大规模集成到可以缩小到单分子水平的固态设备的途径。

著录项

  • 来源
    《Nature》 |2018年第7713期|232-235|共4页
  • 作者单位

    IBM Res Zurich, Ruschlikon, Switzerland;

    Macquarie Univ, Dept Mol Sci, N Ryde, NSW, Australia;

    Univ Basel, Dept Chem, Basel, Switzerland;

    IBM Res Zurich, Ruschlikon, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号