首页> 外文期刊>Nature >Giant and anisotropic many-body spin-orbit tunability in a strongly correlated kagome magnet
【24h】

Giant and anisotropic many-body spin-orbit tunability in a strongly correlated kagome magnet

机译:高度相关的kagome磁体中的巨型各向异性各向异性多轨道自旋轨道

获取原文
获取原文并翻译 | 示例
           

摘要

Owing to the unusual geometry of kagome lattices-lattices made of corner-sharing triangles-their electrons are useful for studying the physics of frustrated, correlated and topological quantum electronic states(1-9). In the presence of strong spin-orbit coupling, the magnetic and electronic structures of kagome lattices are further entangled, which can lead to hitherto unknown spin-orbit phenomena. Here we use a combination of vector-magnetic-field capability and scanning tunnelling microscopy to elucidate the spin-orbit nature of the kagome ferromagnet Fe3Sn2 and explore the associated exotic correlated phenomena. We discover that a many-body electronic state from the kagome lattice couples strongly to the vector field with three-dimensional anisotropy, exhibiting a magnetization-driven giant nematic (two-fold-symmetric) energy shift. Probing the fermionic quasi-particle interference reveals consistent spontaneous nematicity-a clear indication of electron correlation-and vector magnetization is capable of altering this state, thus controlling the many-body electronic symmetry. These spin-driven giant electronic responses go well beyond Zeeman physics and point to the realization of an underlying correlated magnetic topological phase. The tunability of this kagome magnet reveals a strong interplay between an externally applied field, electronic excitations and nematicity, providing new ways of controlling spin-orbit properties and exploring emergent phenomena in topological or quantum materials(10-12).
机译:由于kagome晶格的不寻常几何形状-由角共享三角形构成的晶格-它们的电子可用于研究受挫的,相关的和拓扑的量子电子态的物理学(1-9)。在强自旋轨道耦合的存在下,kagome晶格的磁性和电子结构进一步纠缠,这可能导致迄今未知的自旋轨道现象。在这里,我们结合使用矢量磁场能力和扫描隧道显微镜来阐明kagome铁磁体Fe3Sn2的自旋轨道性质,并探索相关的奇异相关现象。我们发现,从kagome晶格的多体电子状态与三维各向异性的矢量场强烈耦合,表现出磁化驱动的巨大向列(双重对称)能量位移。探测铁离子准粒子干涉显示出一致的自发向列性-电子相关性的明确指示-矢量磁化能够改变这种状态,从而控制多体电子对称性。这些自旋驱动的巨大电子响应远远超出了塞曼物理学的范畴,指向潜在的相关磁拓扑相的实现。这种kagome磁体的可调谐性揭示了外部施加的场,电子激发和向列性之间的强烈相互作用,为控制自旋轨道特性和探索拓扑或量子材料中的新兴现象提供了新的方法(10-12)。

著录项

  • 来源
    《Nature》 |2018年第7725期|91-95|共5页
  • 作者单位

    Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA;

    Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA;

    Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing, Peoples R China;

    Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA;

    Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA;

    Renmin Univ China, Dept Phys, Beijing, Peoples R China;

    Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA;

    Peking Univ, Int Ctr Quantum Mat & Sch Phys, Beijing, Peoples R China;

    Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA;

    Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA;

    Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA;

    Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA;

    Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA;

    Renmin Univ China, Dept Phys, Beijing, Peoples R China;

    Natl Cheng Kung Univ, Dept Phys, Tainan, Taiwan;

    Acad Sinica, Inst Phys, Taipei, Taiwan;

    Renmin Univ China, Dept Phys, Beijing, Peoples R China;

    Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA;

    Peking Univ, Int Ctr Quantum Mat & Sch Phys, Beijing, Peoples R China;

    Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing, Peoples R China;

    Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号