首页> 外文期刊>Nature >Sideband cooling beyond the quantum backaction limit with squeezed light
【24h】

Sideband cooling beyond the quantum backaction limit with squeezed light

机译:压缩光使边带冷却超过量子反作用极限

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum fluctuations of the electromagnetic vacuum produce measurable physical effects such as Casimir forces and the Lamb shift(1). They also impose an observable limit-known as the quantum backaction limit-on the lowest temperatures that can be reached using conventional laser cooling techniques(2,3). As laser cooling experiments continue to bring massive mechanical systems to unprecedentedly low temperatures(4,5), this seemingly fundamental limit is increasingly important in the laboratory(6). Fortunately, vacuum fluctuations are not immutable and can be 'squeezed', reducing amplitude fluctuations at the expense of phase fluctuations. Here we propose and experimentally demonstrate that squeezed light can be used to cool the motion of a macroscopic mechanical object below the quantum backaction limit. We first cool a microwave cavity optomechanical system using a coherent state of light to within 15 per cent of this limit. We then cool the system to more than two decibels below the quantum backaction limit using a squeezed microwave field generated by a Josephson parametric amplifier. From heterodyne spectroscopy of the mechanical sidebands, we measure a minimum thermal occupancy of 0.19 +/- 0.01 phonons. With our technique, even low-frequency mechanical oscillators can in principle be cooled arbitrarily close to the motional ground state, enabling the exploration of quantum physics in larger, more massive systems.
机译:电磁真空的量子波动会产生可测量的物理效应,例如卡西米尔力和兰姆位移(1)。他们还对使用常规激光冷却技术可达到的最低温度施加了一个可观察到的极限,称为量子背向极限。随着激光冷却实验不断将大型机械系统带入前所未有的低温(4,5),这个看似基本的限制在实验室中变得越来越重要(6)。幸运的是,真空波动不是恒定不变的,可以被“压缩”,从而以相位波动为代价减少幅度波动。在这里,我们提出并通过实验证明,压缩光可用于将宏观机械对象的运动冷却到量子反作用极限以下。我们首先使用相干光将微波腔光学机械系统冷却到该限制的15%以内。然后,我们使用约瑟夫森参量放大器产生的压缩微波场将系统冷却至低于量子反作用极限两个分贝以上。根据机械边带的外差光谱法,我们测得的最小热占有率为0.19 +/- 0.01声子。利用我们的技术,即使是低频机械振荡器,原则上也可以任意冷却到接近运动基态,从而可以在更大,更庞大的系统中探索量子物理学。

著录项

  • 来源
    《Nature》 |2017年第7636期|191-195|共5页
  • 作者单位

    Natl Inst Stand & Technol, Boulder, CO 80305 USA;

    Natl Inst Stand & Technol, Boulder, CO 80305 USA;

    Natl Inst Stand & Technol, Boulder, CO 80305 USA;

    Natl Inst Stand & Technol, Boulder, CO 80305 USA;

    Natl Inst Stand & Technol, Boulder, CO 80305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号