首页> 外文期刊>Nature >Weak synchronization and large-scale collective oscillation in dense bacterial suspensions
【24h】

Weak synchronization and large-scale collective oscillation in dense bacterial suspensions

机译:致密细菌悬浮液中的弱同步和大规模集体振荡

获取原文
获取原文并翻译 | 示例
           

摘要

Collective oscillatory behaviour is ubiquitous in nature(1), having a vital role in many biological processes from embryogenesis(2) and organ development(3) to pace-making in neuron networks(4). Elucidating the mechanisms that give rise to synchronization is essential to the understanding of biological self-organization. Collective oscillations in biological multicellular systems often arise from long-range coupling mediated by diffusive chemicals(2,5-9), by electrochemical mechanisms(4,10), or by biomechanical interaction between cells and their physical environment(11). In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we report the discovery of a weak synchronization mechanism that does not require long-range coupling or inherent oscillation of individual cells. We find that millions of motile cells in dense bacterial suspensions can self organize into highly robust collective oscillatory motion, while individual cells move in an erratic manner, without obvious periodic motion but with frequent, abrupt and random directional changes. So erratic are individual trajectories that uncovering the collective oscillations of our micrometre-sized cells requires individual velocities to be averaged over tens or hundreds of micrometres. On such large scales, the oscillations appear to be in phase and the mean position of cells typically describes a regular elliptic trajectory. We found that the phase of the oscillations is organized into a centimetre-scale travelling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations, suggesting that self-organized collective oscillatory motion results from spontaneous chiral and rotational symmetry breaking. These findings reveal a previously unseen type of long-range order in active matter systems (those in which energy is spent locally to produce non-random motion)(12,13). This mechanism of collective oscillation may inspire new strategies to control the self-organization of active matter(14-18) and swarming robots.
机译:集体振荡行为在自然界中无处不在(1),在从胚胎发生(2)和器官发育(3)到神经元网络起搏(4)的许多生物过程中都起着至关重要的作用。阐明引起同步的机制对于理解生物自组织至关重要。生物多细胞系统中的集体振荡通常是由扩散化学物质(2,5-9),电化学机制(4,10)或细胞与其物理环境之间的生物力学相互作用介导的长距离耦合引起的(11)。在这些例子中,某些振荡细胞内自由度的相位是同步的。相反,在这里,我们报告了一种弱同步机制的发现,该机制不需要远程耦合或单个单元格固有的振荡。我们发现,致密细菌悬浮液中的数百万个运动细胞可以自我组织成高度健壮的集体振荡运动,而单个细胞以不规则的方式运动,没有明显的周期性运动,但具有频繁,突然和随机的方向变化。各个轨迹是如此不稳定,以揭示我们微米级单元的集体振动,需要将单个速度平均在数十或数百微米上。在如此大的规模上,振荡似乎是同相的,并且单元的平均位置通常描绘出规则的椭圆形轨迹。我们发现,振荡的相位被组织成厘米级的行波。我们提出了一个带有严格局部相互作用的嘈杂的自推进粒子模型,该模型忠实地说明了我们的观察结果,表明自发的手性和旋转对称性破坏会导致自组织的集体振荡运动。这些发现揭示了活性物质系统中一种以前看不见的远程有序类型(那些在其中局部消耗能量以产生非随机运动)(12,13)。这种集体振荡的机制可能会激发新的策略来控制活性物质(14-18)和群集机器人的自组织。

著录项

  • 来源
    《Nature》 |2017年第7640期|210-214|共5页
  • 作者单位

    Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China|Chinese Univ Hong Kong, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China;

    Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China|Chinese Univ Hong Kong, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China;

    Soochow Univ, Ctr Soft Condensed Matter Phys, Suzhou 215006, Peoples R China;

    Univ Paris Saclay, CNRS, CEA, Serv Phys Etat Condense,CEA Saclay, F-91191 Gif Sur Yvette, France|Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China;

    Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China|Chinese Univ Hong Kong, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号