首页> 外文期刊>Nature >Abiotic tooth enamel
【24h】

Abiotic tooth enamel

机译:非生物牙釉质

获取原文
获取原文并翻译 | 示例
           

摘要

Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix(1-3). This structural motif is unusually consistent across all species from all geological eras(4-6). Such invariability-especially when juxtaposed with the diversity of other tissues-suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels-we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that lightweight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth's normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.
机译:牙釉质包括平行的微米级和纳米级陶瓷柱或与软蛋白基质交错的棱镜(1-3)。在所有地质时代,该结构基序在所有物种中都异常一致(4-6)。这种不变性-特别是与其他组织的多样性并列时-建议存在功能基础。在这里,我们通过依次生长氧化锌纳米线地毯,然后围绕它们逐层沉积聚合物基质,进行了搪瓷启发的圆柱状纳米复合材料的离体复制。我们显示这些纳米复合材料的机械性能(包括硬度)与搪瓷的机械性能相当,尽管纳米复合材料的硬相含量较小。我们的非生物牙釉质的粘弹性系数(VFOM)和重量调整后的VFOM与天然牙釉质相似或更高,我们获得的值分别超过了传统材料极限0.6和0.8。 VFOM值描述了对振动破坏的抵抗力,我们的柱状复合材料表明,可以使用仿生设计来制造对冲击,环境振动和振荡应力具有异常高抵抗力的轻质材料。我们在这些逐层复合材料中获得的高刚度,阻尼和轻量化以前无法实现的组合,归因于有机相界面部分的有效能量消散。当该结构为圆柱状时,该界面部分对沿牙齿法线的宏观变形的体内贡献最大,这表明圆柱状基序在生物物种的珐琅质中具有进化优势。我们希望我们的发现可应用于所有柱状复合材料,并导致高性能承重材料的发展。

著录项

  • 来源
    《Nature》 |2017年第7643期|95-98|共4页
  • 作者单位

    Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA|Myongji Univ, Dept Chem Engn, Yongin 17058, South Korea;

    Michigan Technol Univ, Mech Engn Engn Mech, Houghton, MI 49931 USA;

    Univ Illinois, Illinois Appl Res Inst, Champaign, IL 61820 USA;

    Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA|Kyonggi Univ, Dept Chem Engn, Suwon 443760, South Korea;

    Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA|Univ Washington, William E Boeing Dept Aeronaut & Astronaut, Seattle, WA 98195 USA;

    Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA|Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA|Univ Michigan, Program Macromol Sci & Engn, Ann Arbor, MI 48109 USA;

    Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA|Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA|Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA|Univ Michigan, Biointerfaces Inst, Ann Arbor, MI 48109 USA|Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号