首页> 外文期刊>Nature >Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
【24h】

Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight

机译:智能机翼旋转和后缘涡流可实现高频蚊子飞行

获取原文
获取原文并翻译 | 示例
           

摘要

Mosquitoes exhibit unusual wing kinematics; their long, slender wings flap at remarkably high frequencies for their size (> 800 Hz) and with lower stroke amplitudes than any other insect group(1). This shifts weight support away from the translation-dominated, aerodynamic mechanisms used by most insects(2), as well as by helicopters and aeroplanes, towards poorly understood rotational mechanisms that occur when pitching at the end of each half-stroke. Here we report free-flight mosquito wing kinematics, solve the full Navier-Stokes equations using computational fluid dynamics with overset grids, and validate our results with in vivo flow measurements. We show that, although mosquitoes use familiar separated flow patterns, much of the aerodynamic force that supports their weight is generated in a manner unlike any previously described for a flying animal. There are three key features: leading-edge vortices (a well-known mechanism that appears to be almost ubiquitous in insect flight), trailing-edge vortices caused by a form of wake capture at stroke reversal, and rotational drag. The two new elements are largely independent of the wing velocity, instead relying on rapid changes in the pitch angle (wing rotation) at the end of each half-stroke, and they are therefore relatively immune to the shallow flapping amplitude. Moreover, these mechanisms are particularly well suited to high aspect ratio mosquito wings.
机译:蚊子表现出不同寻常的机翼运动学。它们细长的翅膀在其大小(> 800 Hz)上以很高的频率拍打,冲程幅度比其他任何昆虫组都低(1)。这将重量支撑从大多数昆虫(2)以及直升机和飞机使用的以平移为主的气动机制转移到了人们对每个半冲程末端俯仰时发生的理解不充分的旋转机制的关注。在这里,我们报告了自由飞行的蚊子翼运动学,使用带有重叠网格的计算流体动力学求解了完整的Navier-Stokes方程,并通过体内流量测量验证了我们的结果。我们表明,尽管蚊子使用了熟悉的分离流动模式,但支撑其重量的大部分空气动力学力的产生方式与之前针对飞行动物所描述的方式不同。它具有三个主要特征:前沿涡旋(一种在昆虫飞行中几乎无处不在的众所周知的机制),由中风反转时的尾流捕获形式引起的后缘涡旋以及旋转阻力。这两个新元素在很大程度上与机翼速度无关,而是依赖于每个半冲程结束时俯仰角的快速变化(机翼旋转),因此它们相对不受浅扑动幅度的影响。而且,这些机构特别适合于高纵横比的蚊帐。

著录项

  • 来源
    《Nature》 |2017年第7648期|92-95|共4页
  • 作者单位

    Univ London, Royal Vet Coll, Struct & Mot Lab, Hatfield AL9 7TA, Herts, England;

    Univ London, Royal Vet Coll, Struct & Mot Lab, Hatfield AL9 7TA, Herts, England|Chiba Univ, Grad Sch Engn, Inage Ku, 1-33Yayoi Cho, Chiba 2638522, Japan;

    Univ London, Royal Vet Coll, Struct & Mot Lab, Hatfield AL9 7TA, Herts, England;

    Univ Oxford, Dept Zool, Oxford OX1 3PS, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号