首页> 外文期刊>Nature >Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy
【24h】

Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy

机译:通过面选择性外延实现胶体量子点固体中的连续波激射

获取原文
获取原文并翻译 | 示例
           

摘要

Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material(1), as well as a narrow emission linewidth(2,3). Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature(4-6). This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses(7), limiting the gain lifetime to sub-nanoseconds and preventing steady laser action(8,9). State degeneracy also broadens the photoluminescence linewidth at the single-particle level(10). Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials(11,12) that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultranarrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.
机译:胶体量子点(CQD)与相应的块状材料(1)相比,其能带边缘处的电子态简并性低,并且发射线宽窄(2,3)。不幸的是,对于潜在的激光应用,这种简并不能在价带中完全消除,从而在室温下将空穴分布扩散到多个状态中(4-6)。这导致增加的光增益阈值,要求高的光激发水平以实现总体反转(激发态的电子多于基态的电子(光学增益的条件))。反过来,这会增加俄歇复合损耗(7),将增益寿命限制在亚纳秒以下,并阻止稳定的激光作用(8,9)。状态简并性还拓宽了单粒子水平的光致发光线宽(10)。在这里,我们演示了一种通过均匀双轴应变降低CQD中的带边简并性和单点光致发光线宽的方法。我们已经开发出一种合成策略,我们将其称为刻面选择性外延:首先在纤锌矿CdSe磁芯的(0001)刻面上关闭然后再打开壳的生长,生成不对称的压缩壳,该壳产生内置的双轴应变,而仍保持出色的表面钝化(防止缺陷形成,否则会导致非辐射复合损失)。我们的合成使激子精细结构均匀且足够广泛地扩散,从而防止了价带边缘态因热而消失。因此,我们降低了光学增益阈值并展示了来自CQD固体的连续波激光发射,扩展了可能能够进行连续波激光发射的固溶处理材料库(11,12)。单个CQD表现出超窄的单点线宽,我们成功地将其传播到CQD的整体中。

著录项

  • 来源
    《Nature》 |2017年第7648期|75-79|共5页
  • 作者单位

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada|Simon Fraser Univ, Sch Engn Sci, 8888 Univ Dr Burnaby, Burnaby, BC V5A IS6, Canada;

    Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, 221 Kirkland Hall, Nashville, TN 37235 USA;

    Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, 221 Kirkland Hall, Nashville, TN 37235 USA;

    Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA|Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA;

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada;

    CNR, Emerging Technol Div, Secur & Disrupt Technol, Ottawa, ON K1A 0R6, Canada;

    Univ Ottawa, Dept Phys, Ottawa, ON K1A 0R6, Canada;

    Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA;

    Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, 221 Kirkland Hall, Nashville, TN 37235 USA;

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada;

    Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号