首页> 外文期刊>Nature >Observation of the frozen charge of a Kondo resonance
【24h】

Observation of the frozen charge of a Kondo resonance

机译:观察近藤共振的冻结电荷

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to control electronic states at the nanoscale has contributed to our modern understanding of condensed matter. In particular, quantum dot circuits represent model systems for the study of strong electronic correlations, epitomized by the Kondo effect(1-3). We use circuit quantum electrodynamics architectures to study the internal degrees of freedom of this many-body phenomenon. Specifically, we couple a quantum dot to a highquality- factor microwave cavity to measure with exceptional sensitivity the dot's electronic compressibility, that is, its ability to accommodate charges. Because electronic compressibility corresponds solely to the charge response of the electronic system, it is not equivalent to the conductance, which generally involves other degrees of freedom such as spin. Here, by performing dual conductance and compressibility measurements in the Kondo regime, we uncover directly the charge dynamics of this peculiar mechanism of electron transfer. The Kondo resonance, visible in transport measurements, is found to be ` transparent' to microwave photons trapped in the high-quality cavity, thereby revealing that (in such a many-body resonance) finite conduction is achieved from a charge frozen by Coulomb interaction. This freezing of charge dynamics(4-6) is in contrast to the physics of a free electron gas. We anticipate that the tools of cavity quantum electrodynamics could be used in other types of mesoscopic circuits with many-body correlations7,8, providing a model system in which to perform quantum simulation of fermion-boson problems.
机译:在纳米级控制电子态的能力有助于我们对凝聚态物质的现代理解。特别是,量子点电路代表了用于研究强电子相关性的模型系统,其近藤效应得以概括(1-3)。我们使用电路量子电动力学体系结构来研究这种多体现象的内部自由度。具体来说,我们将量子点耦合到高质量因子微波腔,以极高的灵敏度测量点的电子可压缩性,即其容纳电荷的能力。因为电子可压缩性仅对应于电子系统的电荷响应,所以它不等效于电导,后者通常涉及其他自由度,例如自旋。在这里,通过在近藤状态下执行双重电导和可压缩性测量,我们直接发现了这种电子转移特殊机制的电荷动力学。在传输测量中可见的近藤共振对捕获在高质量腔中的微波光子是“透明的”,从而揭示了(在这种多体共振中)有限的传导是通过库仑相互作用冻结的电荷实现的。电荷动力学的这种冻结(4-6)与自由电子气的物理学相反。我们预计,腔量子电动力学工具可用于具有多体相关性的其他类型的介观电路中7,8,从而提供了一个模型系统,可在其中执行费米子玻色子问题的量子模拟。

著录项

  • 来源
    《Nature》 |2017年第7652期|71-74|共4页
  • 作者单位

    Univ Paris 06, Sorbonne Univ, Univ Paris Diderot Sorbonne Paris Cite, PSL Res Univ,CNRS,Ecole Normal Super,Lab Pierre A, 24 Rue Lhomond, F-75231 Paris 05, France;

    Univ Colorado, JILA, Boulder, CO 80309 USA|Univ Colorado, Dept Phys, Boulder, CO 80309 USA;

    Univ Paris 06, Sorbonne Univ, Univ Paris Diderot Sorbonne Paris Cite, PSL Res Univ,CNRS,Ecole Normal Super,Lab Pierre A, 24 Rue Lhomond, F-75231 Paris 05, France;

    Univ Paris 06, Sorbonne Univ, Univ Paris Diderot Sorbonne Paris Cite, PSL Res Univ,CNRS,Ecole Normal Super,Lab Pierre A, 24 Rue Lhomond, F-75231 Paris 05, France;

    RIKEN, Ctr Emergent Matter Sci, 147 Main Bldg,2-1 Hirosawa, Wako, Saitama 3510198, Japan|PSL Res Univ, Coll France, USR CNRS 3573, JEIP, 11 Pl Marcelin Berthelot, F-75231 Paris 05, France;

    Kyung Hee Univ, Coll Appl Sci, Dept Appl Phys, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi Do, South Korea;

    Korea Univ, Dept Phys, 145 Anam Ro, Seoul 02841, South Korea;

    Univ Paris 06, Sorbonne Univ, Univ Paris Diderot Sorbonne Paris Cite, PSL Res Univ,CNRS,Ecole Normal Super,Lab Pierre A, 24 Rue Lhomond, F-75231 Paris 05, France;

    Univ Paris 06, Sorbonne Univ, Univ Paris Diderot Sorbonne Paris Cite, PSL Res Univ,CNRS,Ecole Normal Super,Lab Pierre A, 24 Rue Lhomond, F-75231 Paris 05, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号