首页> 外文期刊>Nature >Extreme hydrothermal conditions at an active plate-bounding fault
【24h】

Extreme hydrothermal conditions at an active plate-bounding fault

机译:活跃的板块边界断层上的极端热液条件

获取原文
获取原文并翻译 | 示例
           

摘要

Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes(1). Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 +/- 15 degrees Celsius per kilometre(2,3). At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades(4,5). The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 +/- 1 per cent above hydrostatic levels and an average geothermal gradient of 125 +/- 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.
机译:温度和流体压力条件控制着地质断层上的岩石变形和矿化作用,从而控制了地震的分布(1)。典型的板内大陆壳具有流体静水压力和每公里31 +/- 15摄氏度的近地表热梯度(2,3)。在摄氏300-450度以上的温度下(通常在大于10-15公里的深度处发现),石英和长石的晶体内可塑性可缓解地震蠕变引起的应力,因此地震很少发生。水热条件控制着矿物相的稳定性,从而控制了与地震破裂周期有关的摩擦-机械过程,但是很少有来自活动板块边界断层的温度和流体压力数据。在这里,我们报告了在阿尔卑斯断层上部钻出的钻孔的结果,该钻孔处于应力累积周期的后期,预计在未来几十年内将在8级地震中破裂(4,5)。钻孔(深度893米)显示出断层悬挂壁中的孔隙流体压力梯度超过了静水压力水平的9 +/- 1%,平均地热梯度为每公里125 +/- 55摄氏度。这些极端的热液条件是由于断层的快速运动(从深处输送岩石和热量)以及地形驱动的流体运动(将热量集中到山谷中)引起的。断层内可能会发生剪切加热,但这不是解释我们的观察结果所必需的。我们的数据和模型表明,在断层滑动,岩石压裂和蚀变过程以及板块边界断层处的地形发育过程之间存在正反馈,可以在成地震带上部形成高度异常的流体压力和温度梯度。

著录项

  • 来源
    《Nature》 |2017年第7656期|137-140|共4页
  • 作者单位

    GNS Sci, POB 30368, Lower Hutt, New Zealand|Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Univ Otago, Dept Geol, POB 56, Dunedin 9054, New Zealand;

    GNS Sci, POB 30368, Lower Hutt, New Zealand;

    Univ Southampton, Dept Ocean & Earth Sci, Southampton SO14 3ZH, Hants, England;

    Univ Liverpool, Sch Environm Sci, Liverpool L69 3GP, Merseyside, England;

    Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA;

    Univ Otago, Dept Geol, POB 56, Dunedin 9054, New Zealand;

    Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA;

    Univ Auckland, Private Bag 92019, Auckland 1142, New Zealand;

    Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA;

    Univ Montpellier, CNRS, F-34095 Montpellier, France;

    Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Univ Otago, Dept Geol, POB 56, Dunedin 9054, New Zealand;

    Univ Auckland, Private Bag 92019, Auckland 1142, New Zealand;

    GNS Sci, Private Bag 1930, Dunedin 9054, New Zealand;

    Univ Otago, Dept Geol, POB 56, Dunedin 9054, New Zealand;

    Univ Grenoble Alpes, Univ Savoie Mont Blanc, CNRS, IRD,IFSTTAR,ISTerre, F-38000 Grenoble, France;

    Univ Auckland, Private Bag 92019, Auckland 1142, New Zealand;

    Univ Liverpool, Sch Environm Sci, Liverpool L69 3GP, Merseyside, England;

    Univ Otago, Dept Geol, POB 56, Dunedin 9054, New Zealand;

    Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Univ Auckland, Private Bag 92019, Auckland 1142, New Zealand;

    Schlumberger Fiber Opt Technol Ctr, Romsey SO51 9DL, Hants, England;

    GNS Sci, POB 30368, Lower Hutt, New Zealand;

    Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA;

    Osaka Univ, Dept Earth & Space Sci, Osaka 5650871, Japan;

    Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Yamaguchi Univ, Dept Geosphere Sci, Yamaguchi 7538511, Japan;

    GNS Sci, POB 30368, Lower Hutt, New Zealand;

    Kyoto Univ, Grad Sch Engn, Kyoto 6158540, Japan|Japan Agcy Marine Earth Sci & Technol, Kochi Inst Core Sample Res, Kochi 7838502, Japan;

    Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Univ Otago, Dept Geol, POB 56, Dunedin 9054, New Zealand;

    Univ Alberta, Dept Phys, Edmonton, AB T6G 2R3, Canada;

    Univ Liverpool, Sch Environm Sci, Liverpool L69 3GP, Merseyside, England;

    GNS Sci, POB 30368, Lower Hutt, New Zealand|Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Univ Otago, Dept Geol, POB 56, Dunedin 9054, New Zealand;

    McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ H3A 0G4, Canada;

    Univ Southampton, Dept Ocean & Earth Sci, Southampton SO14 3ZH, Hants, England;

    Macquarie Univ, Dept Earth & Planetary Sci, Sydney, NSW 2109, Australia;

    ETH, ScopeM, CH-8093 Zurich, Switzerland;

    Shinshu Univ, Dept Geol, Asahi 3-1-1, Matsumoto, Nagano, Japan;

    Univ Utrecht, Fac Geosci, HPT Lab, NL-3584 CD Utrecht, Netherlands;

    Akita Univ, Dept Earth Sci & Technol, Akita 0108502, Japan;

    Univ Otago, Dept Geol, POB 56, Dunedin 9054, New Zealand;

    Univ Otago, Dept Geol, POB 56, Dunedin 9054, New Zealand;

    Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany;

    Univ Alberta, Dept Phys, Edmonton, AB T6G 2R3, Canada;

    Geol Survey Japan, AIST, Tsukuba, Ibaraki, Japan;

    Victoria Univ Wellington, SGEES, POB 600, Wellington, New Zealand;

    Univ Southampton, Dept Ocean & Earth Sci, Southampton SO14 3ZH, Hants, England;

    Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA;

    Penn State Univ, Dept Geosci, University Pk, PA 16802 USA;

    GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany;

    Univ Otago, Dept Geol, POB 56, Dunedin 9054, New Zealand;

    Univ Southampton, Dept Ocean & Earth Sci, Southampton SO14 3ZH, Hants, England;

    GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号