首页> 外文期刊>Nature >Exceptional points enhance sensing in an optical microcavity
【24h】

Exceptional points enhance sensing in an optical microcavity

机译:卓越的点增强了光学微腔中的感应

获取原文
获取原文并翻译 | 示例
           

摘要

Sensors play an important part in many aspects of daily life such as infrared sensors in home security systems, particle sensors for environmental monitoring and motion sensors in mobile phones. High-quality optical microcavities are prime candidates for sensing applications because of their ability to enhance light-matter interactions in a very confined volume. Examples of such devices include mechanical transducers(1), magnetometers(2), single-particle absorption spectrometers(3), and microcavity sensors for sizing single particles(4) and detecting nanometre-scale objects such as single nanoparticles and atomic ions(5-7). Traditionally, a very small perturbation near an optical microcavity introduces either a change in the linewidth or a frequency shift or splitting of a resonance that is proportional to the strength of the perturbation. Here we demonstrate an alternative sensing scheme, by which the sensitivity of microcavities can be enhanced when operated at non-Hermitian spectral degeneracies known as exceptional points(8-16). In our experiments, we use two nanoscale scatterers to tune a whispering-gallery-mode micro-toroid cavity, in which light propagates along a concave surface by continuous total internal reflection, in a precise and controlled manner to exceptional points(12,13). A target nanoscale object that subsequently enters the evanescent field of the cavity perturbs the system from its exceptional point, leading to frequency splitting. Owing to the complex-square-root topology near an exceptional point, this frequency splitting scales as the square root of the perturbation strength and is therefore larger (for sufficiently small perturbations) than the splitting observed in traditional non-exceptional-point sensing schemes. Our demonstration of exceptional-point-enhanced sensitivity paves the way for sensors with unprecedented sensitivity.
机译:传感器在日常生活的许多方面都起着重要作用,例如家庭安全系统中的红外传感器,用于环境监测的粒子传感器以及手机中的运动传感器。高质量的光学微腔是传感应用的主要候选产品,因为它们能够在非常狭窄的空间内增强光与物质的相互作用。此类设备的示例包括机械换能器(1),磁力计(2),单粒子吸收光谱仪(3)和微腔传感器,用于确定单个粒子的大小(4)和检测纳米级物体,例如单个纳米粒子和原子离子(5) -7)。传统上,光学微腔附近的很小的扰动会引起线宽的变化或共振的频移或分裂,与谐振的强度成正比。在这里,我们展示了一种替代的传感方案,当在非赫米特光谱简并称为例外点(8-16)进行操作时,可以提高微腔的灵敏度。在我们的实验中,我们使用两个纳米级散射体来调整耳语画廊模式的微环形腔,其中光通过连续的全内反射沿凹面传播,以精确且可控的方式传播到异常点(12,13) 。随后进入空腔的渐逝场的目标纳米级物体从其特殊点干扰了系统,导致频率分裂。由于复数的平方根拓扑结构在一个特殊的点附近,因此该频率分裂的规模取决于摄动强度的平方根,因此比传统的非异常点传感方案中观察到的分裂要大(对于足够小的摄动)。我们对异常点增强灵敏度的演示为具有空前灵敏度的传感器铺平了道路。

著录项

  • 来源
    《Nature》 |2017年第7666期|192-196|共5页
  • 作者单位

    Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA;

    Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA;

    Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA;

    Otto von Guericke Univ, Inst Theoret Phys, D-39016 Magdeburg, Germany;

    Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号