首页> 外文期刊>Nature >Network control principles predict neuron function in the Caenorhabditis elegans connectome
【24h】

Network control principles predict neuron function in the Caenorhabditis elegans connectome

机译:网络控制原理可预测秀丽隐杆线虫连接组中的神经元功能

获取原文
获取原文并翻译 | 示例
           

摘要

Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social, and technological networks(1-3). Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans(4-6), allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation(7-13), as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.
机译:对复杂系统的可控性的最新研究提供了一个强大的数学框架,可以系统地探索生物,社会和技术网络中的结构-功能关系(1-3)。尽管理论上有进步,但我们缺乏直接实验证明这些广泛使用的控制原理的有效性。在这里,我们通过对线虫秀丽隐杆线虫的连接组应用控制框架来填补这一空白(4-6),从而使我们能够预测每个秀丽隐杆线虫神经元在运动行为中的参与。我们预测,对肌肉或运动神经元的控制需要12个神经元类,其中包括以前与激光消融有关的运动的神经元组(7-13),以及一个以前未表征的神经元PDB。我们通过实验验证了这一预测,发现PDB的消融会导致大体弯曲时背腹极性的明显丧失。重要的是,控制原理还使我们能够研究每个神经元类别中单个神经元的参与。例如,我们预测,在DD运动神经元类别中,单独消融时,只有三个(DD04,DD05或DD06)会影响运动。这一预测也得到了证实; DD04或DD05的单细胞消融会特别影响人体后部运动,而DD02或DD03的消融则不会。我们的预测对于删除当前连接器中的弱连接,丢失的连接和重新连接的连接具有鲁棒性,表明该分析框架可能适用于较大和特征较少的连接器。

著录项

  • 来源
    《Nature》 |2017年第7677期|519-523|共5页
  • 作者单位

    Northeastern Univ, Ctr Complex Network Res, Boston, MA 02115 USA|Northeastern Univ, Dept Phys, Boston, MA 02115 USA|Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China;

    Univ Cambridge, Behav & Clin Neurosci Inst, Dept Psychiat, Cambridge CB2 0SZ, England;

    Northeastern Univ, Ctr Complex Network Res, Boston, MA 02115 USA|Northeastern Univ, Dept Phys, Boston, MA 02115 USA;

    MRC Lab Mol Biol, Div Neurobiol, Cambridge Biomed Campus,Francis Crick Ave, Cambridge CB2 0QH, England;

    MRC Lab Mol Biol, Div Neurobiol, Cambridge Biomed Campus,Francis Crick Ave, Cambridge CB2 0QH, England;

    MRC Lab Mol Biol, Div Neurobiol, Cambridge Biomed Campus,Francis Crick Ave, Cambridge CB2 0QH, England;

    Northeastern Univ, Ctr Complex Network Res, Boston, MA 02115 USA|Northeastern Univ, Dept Phys, Boston, MA 02115 USA|Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02115 USA|Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Boston, MA 02115 USA|Cent European Univ, Ctr Network Sci, H-1051 Budapest, Hungary;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号