首页> 外文期刊>Nature >Ultra-selective looming detection from radial motion opponency
【24h】

Ultra-selective looming detection from radial motion opponency

机译:径向运动对手的超选择性隐身检测

获取原文
获取原文并翻译 | 示例
           

摘要

Nervous systems combine lower-level sensory signals to detect higher-order stimulus features critical to survival(1-3), such as the visual looming motion created by an imminent collision or approaching predator(4). Looming-sensitive neurons have been identified in diverse animal species(5-9). Different large-scale visual features such as looming often share local cues, which means loom-detecting neurons face the challenge of rejecting confounding stimuli. Here we report the discovery of an ultra-selective looming detecting neuron, lobula plate/lobula columnar, type II (LPLC2)(10) in Drosophila, and show how its selectivity is established by radial motion opponency. In the fly visual system, directionally selective small-field neurons called T4 and T5 form a spatial map in the lobula plate, where they each terminate in one of four retinotopic layers, such that each layer responds to motion in a different cardinal direction(11-13). Single-cell anatomical analysis reveals that each arm of the LPLC2 cross-shaped primary dendrites ramifies in one of these layers and extends along that layer's preferred motion direction. In vivo calcium imaging demonstrates that, as their shape predicts, individual LPLC2 neurons respond strongly to outward motion emanating from the centre of the neuron's receptive field. Each dendritic arm also receives local inhibitory inputs directionally selective for inward motion opposing the excitation. This radial motion opponency generates a balance of excitation and inhibition that makes LPLC2 non-responsive to related patterns of motion such as contraction, wide-field rotation or luminance change. As a population, LPLC2 neurons densely cover visual space and terminate onto the giant fibre descending neurons, which drive the jump muscle motor neuron to trigger an escape take off. Our findings provide a mechanistic description of the selective feature detection that flies use to discern and escape looming threats.
机译:神经系统结合低水平的感觉信号来检测对生存至关重要的高阶刺激特征(1-3),例如由于即将发生的碰撞或掠食者(4)而产生的视觉隐约运动。在各种动物物种中都发现了隐隐约约的敏感神经元(5-9)。诸如隐隐约约之类的不同的大规模视觉特征经常共享局部线索,这意味着检测织机的神经元面临拒绝混杂刺激的挑战。在这里,我们报告果蝇中发现超选择性的若隐若现的检测神经元,小叶板/小叶柱状II型(LPLC2)(10),并显示其选择性是如何通过径向运动对立来建立的。在飞行视觉系统中,被称为T4和T5的方向选择性小视野神经元在小叶板中形成空间图,它们分别终止于四个视网膜视点层之一,从而每一层对不同基方向的运动做出反应(11 -13)。单细胞解剖分析显示,LPLC2十字形初级树突的每个臂在这些层之一中分支,并沿该层的首选运动方向延伸。体内钙成像表明,正如它们的形状所预测的那样,单个LPLC2神经元对神经元感受野中心发出的向外运动强烈反应。每个树突臂还接收方向性选择性的局部抑制输入,以抵抗与激发相反的向内运动。这种径向运动的对立产生了激发和抑制之间的平衡,使LPLC2对相关的运动模式(例如收缩,宽视场旋转或亮度变化)无响应。作为种群,LPLC2神经元密集地覆盖了视觉空间,并终止于巨大的纤维下降神经元,从而驱动跳跃肌肉运动神经元触发逃生起飞。我们的发现为果蝇用来识别和逃避迫在眉睫的威胁的选择性特征检测提供了机械描述。

著录项

  • 来源
    《Nature》 |2017年第7679期|237-241|共5页
  • 作者单位

    Howard Hughes Med Inst, Janelia Res Campus,19700 Helix Dr, Ashburn, VA 20147 USA;

    Howard Hughes Med Inst, Janelia Res Campus,19700 Helix Dr, Ashburn, VA 20147 USA;

    Howard Hughes Med Inst, Janelia Res Campus,19700 Helix Dr, Ashburn, VA 20147 USA;

    Howard Hughes Med Inst, Janelia Res Campus,19700 Helix Dr, Ashburn, VA 20147 USA;

    Howard Hughes Med Inst, Janelia Res Campus,19700 Helix Dr, Ashburn, VA 20147 USA;

    Howard Hughes Med Inst, Janelia Res Campus,19700 Helix Dr, Ashburn, VA 20147 USA;

    Howard Hughes Med Inst, Janelia Res Campus,19700 Helix Dr, Ashburn, VA 20147 USA;

    Howard Hughes Med Inst, Janelia Res Campus,19700 Helix Dr, Ashburn, VA 20147 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号