首页> 外文期刊>Nature >Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel
【24h】

Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel

机译:部分氧化的原子钴层,用于将二氧化碳电解还原为液体燃料

获取原文
获取原文并翻译 | 示例
           

摘要

Electroreduction of CO2 into useful fuels, especially if driven by renewable energy, represents a potentially 'clean' strategy for replacing fossil feedstocks and dealing with increasing CO2 emissions and their adverse effects on climate(1-4). The critical bottleneck lies in activating CO2 into the CO2-radical anion or other intermediates that can be converted further, as the activation usually requires impractically high overpotentials. Recently, electrocatalysts based on oxide-derived metal nanostructures have been shown(5-8) to enable CO2 reduction at low overpotentials. However, it remains unclear how the electrocatalytic activity of these metals is influenced by their native oxides, mainly because microstructural features such as interfaces and defects(9) influence CO2 reduction activity yet are difficult to control. To evaluate the role of the two different catalytic sites, here we fabricate two kinds of four-atom-thick layers: pure cobalt metal, and co-existing domains of cobalt metal and cobalt oxide. Cobalt mainly produces formate (HCOO-) during CO2 electroreduction; we find that surface cobalt atoms of the atomically thin layers have higher intrinsic activity and selectivity towards formate production, at lower overpotentials, than do surface cobalt atoms on bulk samples. Partial oxidation of the atomic layers further increases their intrinsic activity, allowing us to realize stable current densities of about 10 milliamperes per square centimetre over 40 hours, with approximately 90 per cent formate selectivity at an overpotential of only 0.24 volts, which outperforms previously reported metal or metal oxide electrodes evaluated under comparable conditions(1,2,6,7,10). The correct morphology and oxidation state can thus transform a material from one considered nearly non-catalytic for the CO2 electroreduction reaction into an active catalyst. These findings point to new opportunities for manipulating and improving the CO2 electroreduction properties of metal systems, especially once the influence of both the atomic-scale structure and the presence of oxide are mechanistically better understood.
机译:将CO2电还原为有用的燃料,尤其是在由可再生能源驱动的情况下,代表了一种潜在的“清洁”战略,可替代化石原料并处理增加的CO2排放及其对气候的不利影响(1-4)。关键瓶颈在于将CO2活化成CO2自由基阴离子或其他可以进一步转化的中间体,因为活化通常需要不切实际的高过电势。近来,已经显示出基于氧化物衍生的金属纳米结构的电催化剂(5-8)能够在低超电势下还原CO2。但是,目前尚不清楚这些金属的电催化活性如何受到其天然氧化物的影响,这主要是因为诸如界面和缺陷(9)之类的微观结构特征会影响CO2还原活性,但仍难以控制。为了评估两个不同催化位点的作用,我们在此制造了两种四原子厚的层:纯钴金属以及钴金属和氧化钴的共存域。钴主要在二氧化碳电还原过程中产生甲酸(HCOO-)。我们发现原子薄层的表面钴原子比整体样品上的表面钴原子具有更高的内在活性和对甲酸盐的选择性,在较低的超电势下。原子层的部分氧化进一步提高了其固有活性,使我们能够在40小时内实现每平方厘米约10毫安的稳定电流密度,在仅0.24伏的超电势下,甲酸酯的选择性约为90%,优于先前报道的金属或在类似条件下评估的金属氧化物电极(1,2,6,7,10)。正确的形态和氧化态因此可以将一种材料从一种被认为对CO2电还原反应几乎没有催化作用的材料转变为一种活性催化剂。这些发现为操纵和改善金属系统的CO2电解还原性能提供了新的机会,尤其是从机械上更好地理解了原子级结构和氧化物的影响之后。

著录项

  • 来源
    《Nature》 |2016年第7584期|68-71|共4页
  • 作者单位

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Collaborat Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Collaborat Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Collaborat Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Collaborat Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China|Chinese Acad Sci, Hefei Sci Ctr, Hefei 230061, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Collaborat Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Collaborat Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Collaborat Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Collaborat Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Collaborat Innovat Ctr Chem Energy Mat, Hefei 230026, Anhui, Peoples R China|Chinese Acad Sci, Hefei Sci Ctr, Hefei 230061, Anhui, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号