首页> 外文期刊>Nature >Controlling spin relaxation with a cavity
【24h】

Controlling spin relaxation with a cavity

机译:用型腔控制旋转松弛

获取原文
获取原文并翻译 | 示例
           

摘要

Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized(1) that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave(2) or optical(3,4) cavities, and is essential for the realization of high-efficiency single-photon sources(5). Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing(6). They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.
机译:辐射的自发发射是激发的量子系统恢复平衡的基本机制之一。但是,对于自旋,由于磁偶极子与电磁场之间的耦合较弱,因此与其他非辐射弛豫过程相比,自发发射通常可以忽略不计。 1946年,赛尔(Purcell)意识到(1),通过将量子系统置于共振腔中可以大大提高自发发射的速率。此效应已被广泛用于控制与微波(2)或光学(3,4)腔耦合的原子和半导体异质结构的寿命,并且对于实现高效单光子源(5)至关重要。在这里,我们报告了这种想法在固体中旋转的应用。通过将硅中的施主自旋耦合到具有高品质因数和小模量的超导微波腔,我们达到了自发发射构成自旋弛豫的主要机制的状态。随着自旋调谐到腔共振,弛豫速率增加了三个数量级,这表明可以根据需要控制能量弛豫。我们的结果提供了一种将自旋系统初始化为基态的一般方法,因此可用于磁共振和量子信息处理(6)。他们还证明,自旋的磁偶极子与电磁场之间的耦合可以增强到量子涨落对自旋动力学有显着影响的程度。因此,它们代表了各个自旋与微波光子相干磁耦合的重要一步。

著录项

  • 来源
    《Nature》 |2016年第7592期|74-77|共4页
  • 作者单位

    Univ Paris Saclay, CEA Saclay, CNRS, Quantron Grp,SPEC,CEA, F-91191 Gif Sur Yvette, France;

    UCL, London Ctr Nanotechnol, London WC1H 0AH, England|Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia;

    Univ Paris Saclay, CEA Saclay, CNRS, Quantron Grp,SPEC,CEA, F-91191 Gif Sur Yvette, France|Okinawa Inst Sci & Technol, Grad Univ, Onna, Okinawa 9040495, Japan;

    Univ Paris Saclay, CEA Saclay, CNRS, Quantron Grp,SPEC,CEA, F-91191 Gif Sur Yvette, France|CNRS, UMR 8520, ISEN Dept, Inst Elect Microelect & Nanotechnol, Ave Poincare,CS 60069, F-59652 Villeneuve Dascq, France;

    Univ Paris Saclay, CEA Saclay, CNRS, Quantron Grp,SPEC,CEA, F-91191 Gif Sur Yvette, France|Bar Ilan Univ, BINA, Quantum Nanoelect Lab, Ramat Gan, Israel;

    UCL, London Ctr Nanotechnol, London WC1H 0AH, England;

    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Accelerator Technol & Appl Phys Div, Berkeley, CA 94720 USA;

    Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Accelerator Technol & Appl Phys Div, Berkeley, CA 94720 USA;

    Univ Paris Saclay, CEA Saclay, CNRS, Quantron Grp,SPEC,CEA, F-91191 Gif Sur Yvette, France;

    Univ Paris Saclay, CEA Saclay, CNRS, Quantron Grp,SPEC,CEA, F-91191 Gif Sur Yvette, France;

    UCL, London Ctr Nanotechnol, London WC1H 0AH, England;

    Univ Paris Saclay, CEA Saclay, CNRS, Quantron Grp,SPEC,CEA, F-91191 Gif Sur Yvette, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号