首页> 外文期刊>Nature >On-surface synthesis of graphene nanoribbons with zigzag edge topology
【24h】

On-surface synthesis of graphene nanoribbons with zigzag edge topology

机译:锯齿形边缘拓扑的石墨烯纳米带的表面合成

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene-based nanostructures exhibit electronic properties that are not present in extended graphene. For example, quantum confinement in carbon nanotubes and armchair graphene nanoribbons leads to the opening of substantial electronic bandgaps that are directly linked to their structural boundary conditions(1,2). Nanostructures with zigzag edges are expected to host spin-polarized electronic edge states and can thus serve as key elements for graphene-based spintronics(3). The edge states of zigzag graphene nanoribbons (ZGNRs) are predicted to couple ferromagnetically along the edge and antiferromagnetically between the edges(4), but direct observation of spin-polarized edge states for zigzag edge topologies-including ZGNRs-has not yet been achieved owing to the limited precision of current top-down approaches(5-10). Here we describe the bottom-up synthesis of ZGNRs through surface-assisted polymerization and cyclodehydrogenation of specifically designed precursor monomers to yield atomically precise zigzag edges. Using scanning tunnelling spectroscopy we show the existence of edge-localized states with large energy splittings. We expect that the availability of ZGNRs will enable the characterization of their predicted spin-related properties, such as spin confinement(11) and filtering(12,13), and will ultimately add the spin degree of freedom to graphene-based circuitry.
机译:基于石墨烯的纳米结构展现出扩展石墨烯中不存在的电子特性。例如,将碳限制在碳纳米管和扶手椅石墨烯纳米带中导致直接打开与其结构边界条件直接相关的大量电子带隙(1,2)。具有锯齿形边缘的纳米结构有望承载自旋极化的电子边缘状态,因此可以用作基于石墨烯的自旋电子学的关键元素(3)。锯齿形石墨烯纳米带(ZGNRs)的边缘状态预计会沿着边缘铁磁耦合并且在边缘之间反铁磁耦合(4),但是由于包括ZGNRs在内的锯齿形边缘拓扑结构(包括ZGNRs)的自旋极化边缘状态的直接观察尚未实现限制了当前自上而下方法的精度(5-10)。在这里,我们描述了通过表面辅助聚合和特殊设计的前体单体的环脱氢以产生原子精确的锯齿形边缘的ZGNR自下而上的合成。使用扫描隧道光谱,我们显示了具有大能量分裂的边缘局域化状态的存在。我们期望ZGNR的可用性将能够表征其预测的自旋相关特性,例如自旋限制(11)和滤波(12,13),并最终为基于石墨烯的电路增加自旋自由度。

著录项

  • 来源
    《Nature》 |2016年第7595期|489-492|共4页
  • 作者单位

    Empa, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland;

    Empa, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland;

    Max Planck Inst Polymer Res, D-55128 Mainz, Germany;

    Empa, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland;

    Empa, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland;

    Empa, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland;

    Empa, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland;

    Empa, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland;

    Empa, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland|Empa, Swiss Fed Labs Mat Sci & Technol, NCCR MARVEL, CH-8600 Dubendorf, Switzerland;

    Empa, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland;

    Max Planck Inst Polymer Res, D-55128 Mainz, Germany;

    Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany|Tech Univ Dresden, Dept Chem & Food Chem, D-01062 Dresden, Germany;

    Max Planck Inst Polymer Res, D-55128 Mainz, Germany;

    Empa, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland|Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号