首页> 外文期刊>Nature >Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
【24h】

Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off

机译:亚稳态高熵双相合金克服了强度-延展性的折衷

获取原文
获取原文并翻译 | 示例
           

摘要

Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off(1,2). Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization(3-6). Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection(7-11), the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase(12)); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase(13)). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels(14,15) and massive solid-solution strengthening of high-entropy alloys(3). In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials(16,17). This metastability-engineering strategy should thus usefully guide design in the near-infinite compositional space of high-entropy alloys.
机译:几千年来,金属一直是人类最重要的材料。但是,它们的使用受到生态和经济因素的影响。具有更高强度和延展性的合金可以通过减轻重量和提高能效来缓解这些担忧。但是,大多数提高强度的冶金机制会导致延展性损失,这种作用称为强度-延性的折衷(1,2)。在这里,我们提出了一种亚稳态工程策略,其中我们设计了具有多个成分等效的高熵相的纳米结构大块高熵合金。最初提出高熵合金是通过熵最大化(3-6)受益于相稳定。然而,由于最近的工作表明了这种连接的弱点(7-11),放松了对高熵合金成分的严格限制,因此这一想法被推翻了。我们通过降低相稳定性来实现两个关键优势:由于双相微观结构而导致的界面硬化(由于高温相的热稳定性降低所致(12));以及相变引起的硬化(由于室温相的机械稳定性降低(13))。这结合了两个方面的优点:由于先进钢已知的相稳定性下降而导致的广泛硬化(14,15)和高熵合金的大量固溶强化(3)。在我们的相变诱导塑性辅助双相高熵合金(TRIP-DP-HEA)中,这两个贡献分别导致增强的反晶和晶间滑动性,从而提高了强度。此外,通过稳定相的位错硬化和亚稳态的相变诱导硬化而实现的增加的应变硬化能力可提高延展性。强度和延展性的综合提高使TRIP-DP-HEA合金与其他最近开发的结构材料区分开(16,17)。因此,这种亚稳性工程策略应有效指导高熵合金的接近无限组成空间中的设计。

著录项

  • 来源
    《Nature》 |2016年第7606期|227-230|共4页
  • 作者单位

    Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany;

    Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany;

    Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany;

    Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany;

    Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany|MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号