首页> 外文期刊>Nature >Single-molecule strong coupling at room temperature in plasmonic nanocavities
【24h】

Single-molecule strong coupling at room temperature in plasmonic nanocavities

机译:等离子体纳米腔中室温下的单分子强耦合

获取原文
获取原文并翻译 | 示例
           

摘要

Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter(1,2), forming building blocks for quantum information systems and for ultralow-power switches and lasers(3-6). Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use(5,7,8). Here, by scaling the cavity volume to less than 40 cubic nanometres and using host-guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light-matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules-matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis(9) and the possibility of manipulating chemical bonds(10).
机译:放置在光腔中的光子发射器会经历一个环境,该环境会改变它们与周围光场耦合的方式。在弱耦合状态下,增强了从发射器提取光的能力。但是,当发生单发射体强耦合时,就会产生更深刻的影响:产生混合态,它们是部分光,部分物质(1,2),形成了量子信息系统以及超低功率开关和激光器的构建基块(3-6) 。迄今为止,这种腔体量子电动力学一直是低温和复杂制造方法的保留,从而损害了其使用范围(5,7,8)。在这里,通过将空腔体积缩小到小于40立方纳米,并使用客体化学方法将一到十个保护性隔离的亚甲基蓝分子排列在一起,我们在室温和环境条件下达到了强耦合状态。来自50多个此类等离子纳米腔的色散曲线显示出特征性的光-质混合,十个亚甲基蓝分子的拉比频率为300毫电子伏,而单分子匹配的定量模型的拉比频率降低至90毫电子伏。振动光谱时间序列和暗场散射光谱的统计分析提供了单分子强耦合的证据。光分子的这种修整可以改变光化学,开辟了探索复杂的自然过程的过程,例如光合作用(9)和操纵化学键的可能性(10)。

著录项

  • 来源
    《Nature》 |2016年第7610期|127-130|共4页
  • 作者单位

    Univ Cambridge, Cavendish Lab, NanoPhoton Ctr, Cambridge CB3 0HE, England;

    Univ Cambridge, Cavendish Lab, NanoPhoton Ctr, Cambridge CB3 0HE, England;

    Univ Cambridge, Cavendish Lab, NanoPhoton Ctr, Cambridge CB3 0HE, England;

    Univ Cambridge, Dept Chem, Melville Lab Polymer Synth, Lensfield Rd, Cambridge CB2 1EW, England;

    Univ Cambridge, Dept Chem, Melville Lab Polymer Synth, Lensfield Rd, Cambridge CB2 1EW, England;

    Kings Coll London, Dept Chem, London SE1 1DB, England;

    Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England;

    Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England;

    Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England;

    Univ Cambridge, Cavendish Lab, NanoPhoton Ctr, Cambridge CB3 0HE, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号