首页> 外文期刊>Nature >Photodissociation of ultracold diatomic strontium molecules with quantum state control
【24h】

Photodissociation of ultracold diatomic strontium molecules with quantum state control

机译:具有量子态控制的超冷双原子锶分子的光解离

获取原文
获取原文并翻译 | 示例
           

摘要

Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation(1), Feshbach resonances(2) and bimolecular collisions(3), these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold Sr-88(2) molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation(4-7) and instead are accurately described by a quantum mechanical model(8,9). The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics(10,11).
机译:预计超冷温度下的化学反应将受量子力学效应的支配。尽管通过原子光缔合(1),Feshbach共振(2)和双分子碰撞(3)取得了超冷化学的进展,但这些方法受到不完善的量子态选择性的限制。特别是,要获得对基态或激发的连续量子态的完全控制仍然是一个挑战。在这里,我们使用光解离来实现这种控制,光解离是一种在传出片段的角度分布中编码大量信息的方法。通过将超冷Sr-88(2)分子光解离并完全控制低能连续体,我们可以进入超冷化学的量子状态,观察共振和非共振势垒隧穿,反应产物的物质波干扰以及禁止的反应途径。我们的结果说明了传统的光解离准经典模型的失败(4-7),而是由量子力学模型(8,9)进行了准确描述。具有在低能量下产生明确的量子连续态的实验能力将使高精度分子化学研究无法获得的远距离分子电势成为可能,并且可能成为纠缠态和相干物质波的来源。量子光学的广泛实验(10,11)。

著录项

  • 来源
    《Nature》 |2016年第7610期|122-126|共5页
  • 作者单位

    Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA;

    Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA;

    Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA|Univ Munich, Fac Phys, Schellingstr 4, D-80799 Munich, Germany;

    Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA;

    Univ Warsaw, Dept Chem, Quantum Chem Lab, Pasteura 1, PL-02093 Warsaw, Poland;

    Univ Warsaw, Dept Chem, Quantum Chem Lab, Pasteura 1, PL-02093 Warsaw, Poland;

    Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号