首页> 外文期刊>Nature >A somitic contribution to the apical ectodermal ridge is essential for fin formation
【24h】

A somitic contribution to the apical ectodermal ridge is essential for fin formation

机译:根尖对表皮外皮mit的部分吸收对鳍形成至关重要

获取原文
获取原文并翻译 | 示例
           

摘要

The transition from fins to limbs was an important terrestrial adaptation, but how this crucial evolutionary shift arose developmentally is unknown. Current models focus on the distinct roles of the apical ectodermal ridge (AER) and the signalling molecules that it secretes during limb and fin outgrowth. In contrast to the limb AER, the AER of the fin rapidly transitions into the apical fold and in the process shuts off AER-derived signals that stimulate proliferation of the precursors of the appendicular skeleton(1-10). The differing fates of the AER during fish and tetrapod development have led to the speculation that fin-fold formation was one of the evolutionary hurdles to the AER-dependent expansion of the fin mesenchyme required to generate the increased appendicular structure evident within limbs(11). Consequently, a heterochronic shift in the AER-to-apical-fold transition has been postulated to be crucial for limb evolution(11). The ability to test this model has been hampered by a lack of understanding of the mechanisms controlling apical fold induction(11,12). Here we show that invasion by cells of a newly identified somite-derived lineage into the AER in zebrafish regulates apical fold induction. Ablation of these cells inhibits apical fold formation, prolongs AER activity and increases the amount of fin bud mesenchyme, suggesting that these cells could provide the timing mechanism proposed in Thorogood's clock model of the fin-to-limb transition(11). We further demonstrate that apical-fold-inducing cells are progressively lost during gnathostome evolution; the absence of such cells within the tetrapod limb suggests that their loss may have been a necessary prelude to the attainment of limb-like structures in Devonian sarcopterygian fish.
机译:从鳍到四肢的过渡是一种重要的陆地适应,但是这种至关重要的进化转变如何在发育上产生尚不清楚。当前的模型侧重于根尖外胚层(AER)及其在肢体和鳍长出过程中分泌的信号分子的独特作用。与肢体AER相反,鳍的AER迅速过渡到根尖褶皱,并在此过程中切断了AER衍生的信号,这些信号刺激了阑尾骨架的前体增殖(1-10)。鱼和四足动物发育过程中AER的不同命运导致人们猜测,鳍折叠形成是鳍间充质的AER依赖性扩张的进化障碍之一,以产生肢体中明显增加的阑尾结构(11) 。因此,AER向心尖折叠过渡的异时性移位被认为对肢体进化至关重要(11)。缺乏对控制根尖诱导的机制的了解阻碍了测试该模型的能力(11,12)。在这里,我们显示了斑马鱼中新鉴定出的由豆科植物衍生的谱系进入AER的细胞入侵调节了根尖的诱导。这些细胞的消融抑制了根尖褶皱的形成,延长了AER活性并增加了鳍芽间充质的数量,这表明这些细胞可以提供Thorogood的鳍到肢体过渡时钟模型中提出的计时机制(11)。我们进一步证明,在gnathostome进化过程中,根尖诱导细胞逐渐丢失。在四足动物的肢体中没有此类细胞,这表明它们的丢失可能是泥盆纪鞘翅目鱼类获得肢体状结构的必要前奏。

著录项

  • 来源
    《Nature》 |2016年第7613期|542-546|共5页
  • 作者单位

    Monash Univ, Australian Regenerat Med Inst, Level 1,15 Innovat Walk,Wellington Rd, Clayton, Vic 3800, Australia|Tech Univ Dresden, DFG Ctr Regenerat Therapies Dresden, Fetscherstr 105, D-01307 Dresden, Germany;

    Macquarie Univ, Fac Med & Heath Sci, MND & Neurodegenerat Dis Res Program, N Ryde, NSW 2109, Australia;

    Monash Univ, Australian Regenerat Med Inst, Level 1,15 Innovat Walk,Wellington Rd, Clayton, Vic 3800, Australia;

    Monash Univ, Australian Regenerat Med Inst, Level 1,15 Innovat Walk,Wellington Rd, Clayton, Vic 3800, Australia;

    Monash Univ, Australian Regenerat Med Inst, Level 1,15 Innovat Walk,Wellington Rd, Clayton, Vic 3800, Australia;

    Monash Univ, Australian Regenerat Med Inst, Level 1,15 Innovat Walk,Wellington Rd, Clayton, Vic 3800, Australia;

    Monash Univ, Australian Regenerat Med Inst, Level 1,15 Innovat Walk,Wellington Rd, Clayton, Vic 3800, Australia;

    Monash Univ, Australian Regenerat Med Inst, Level 1,15 Innovat Walk,Wellington Rd, Clayton, Vic 3800, Australia;

    Univ Oxford, Kennedy Inst Rheumatol, Roosevelt Dr, Oxford OX3 7FY, England|Tech Univ Dresden, DFG Ctr Regenerat Therapies Dresden, Fetscherstr 105, D-01307 Dresden, Germany;

    Univ Ulm, Inst Biochem & Mol Biol, Albert Einstein Allee 11, D-89081 Ulm, Germany;

    Monash Univ, Australian Regenerat Med Inst, Level 1,15 Innovat Walk,Wellington Rd, Clayton, Vic 3800, Australia;

    Monash Univ, Australian Regenerat Med Inst, Level 1,15 Innovat Walk,Wellington Rd, Clayton, Vic 3800, Australia|Monash Univ, EMBL Australia Melbourne Node, Level 1,Bldg 75,Wellington Rd, Clayton, Vic 3800, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号