首页> 外文期刊>Nature >High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells
【24h】

High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells

机译:高效二维Ruddlesden-Popper钙钛矿太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

Three-dimensional organic-inorganic perovskites have emerged as one of the most promising thin-film solar cell materials owing to their remarkable photophysical properties(1-5), which have led to power conversion efficiencies exceeding 20 per cent(6,7), with the prospect of further improvements towards the Shockley-Queisser limit for a single-junction solar cell (33.5 per cent) (8). Besides efficiency, another critical factor for photovoltaics and other optoelectronic applications is environmental stability and photostability under operating conditions(9-15). In contrast to their three-dimensional counterparts, Ruddlesden-Popper phases-layered two-dimensional perovskite films-have shown promising stability, but poor efficiency at only 4.73 per cent(13,16,17). This relatively poor efficiency is attributed to the inhibition of out-of-plane charge transport by the organic cations, which act like insulating spacing layers between the conducting inorganic slabs. Here we overcome this issue in layered perovskites by producing thin films of near-single-crystalline quality, in which the crystallographic planes of the inorganic perovskite component have a strongly preferential out-of-plane alignment with respect to the contacts in planar solar cells to facilitate efficient charge transport. We report a photovoltaic efficiency of 12.52 per cent with no hysteresis, and the devices exhibit greatly improved stability in comparison to their three-dimensional counterparts when subjected to light, humidity and heat stress tests. Unencapsulated two-dimensional perovskite devices retain over 60 per cent of their efficiency for over 2,250 hours under constant, standard (AM1.5G) illumination, and exhibit greater tolerance to 65 per cent relative humidity than do three-dimensional equivalents. When the devices are encapsulated, the layered devices do not show any degradation under constant AM1.5G illumination or humidity. We anticipate that these results will lead to the growth of single-crystalline, solution-processed, layered, hybrid, perovskite thin films, which are essential for high-performance opto-electronic devices with technologically relevant long-term stability.
机译:三维有机-无机钙钛矿因其出色的光物理特性而成为最有前途的薄膜太阳能电池材料之一(1-5),导致功率转换效率超过20%(6,7),并有望进一步改善单结太阳能电池的Shockley-Queisser限制(33.5%)(8)。除了效率外,光伏和其他光电应用的另一个关键因素是工作条件下的环境稳定性和光稳定性(9-15)。与三维相比较,Ruddlesden-Popper相分层的二维钙钛矿膜显示出令人鼓舞的稳定性,但效率仅为4.73%(13,16,17)。这种相对较差的效率归因于有机阳离子对平面外电荷传输的抑制,有机阳离子的作用类似于导电无机板之间的绝缘间隔层。在这里,我们通过生产接近单晶质量的薄膜来克服层状钙钛矿中的这一问题,其中无机钙钛矿成分的晶体学平面相对于平面太阳能电池中的触点具有极优先的面外取向。促进高效的电荷运输。我们报告的光伏效率为12.52%,没有滞后现象,并且在经受光,湿和热应力测试时,这些器件与三维同类器件相比,稳定性大大提高。未封装的二维钙钛矿器件在恒定的标准(AM1.5G)照明下可在超过2250小时的时间内保持60%的效率,并且比3D等效器件表现出对65%相对湿度的更大耐受性。封装器件后,分层的器件在恒定的AM1.5G光照或湿度下不会显示任何退化。我们预计这些结果将导致单晶,固溶处理,分层,混合,钙钛矿薄膜的生长,这对于具有技术相关的长期稳定性的高性能光电设备必不可少。

著录项

  • 来源
    《Nature》 |2016年第7616期|312-316|共5页
  • 作者单位

    Los Alamos Natl Lab, Los Alamos, NM 87545 USA|Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA;

    Los Alamos Natl Lab, Los Alamos, NM 87545 USA;

    Los Alamos Natl Lab, Los Alamos, NM 87545 USA;

    Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA|Northwestern Univ, Dept Mat Sci, Evanston, IL 60208 USA|Northwestern Univ, Engn & Argonne Northwestern Solar Energy Res ANSE, Evanston, IL 60208 USA;

    Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA;

    Northwestern Univ, Dept Mat Sci, Evanston, IL 60208 USA|Northwestern Univ, Engn & Argonne Northwestern Solar Energy Res ANSE, Evanston, IL 60208 USA;

    Los Alamos Natl Lab, Los Alamos, NM 87545 USA;

    Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA|Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA;

    Los Alamos Natl Lab, Los Alamos, NM 87545 USA;

    Los Alamos Natl Lab, Los Alamos, NM 87545 USA;

    INSA Rennes, CNRS, UMR 6082, Fonct Opt Technol Informat,FOTON, F-35708 Rennes, France;

    INSA Rennes, CNRS, UMR 6082, Fonct Opt Technol Informat,FOTON, F-35708 Rennes, France;

    Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA;

    Los Alamos Natl Lab, Los Alamos, NM 87545 USA;

    Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA;

    Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA;

    Northwestern Univ, Dept Mat Sci, Evanston, IL 60208 USA|Northwestern Univ, Engn & Argonne Northwestern Solar Energy Res ANSE, Evanston, IL 60208 USA;

    Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA|Northwestern Univ, Dept Mat Sci, Evanston, IL 60208 USA|Northwestern Univ, Engn & Argonne Northwestern Solar Energy Res ANSE, Evanston, IL 60208 USA;

    Los Alamos Natl Lab, Los Alamos, NM 87545 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号