首页> 外文期刊>Nature >Extending the lifetime of a quantum bit with error correction in superconducting circuits
【24h】

Extending the lifetime of a quantum bit with error correction in superconducting circuits

机译:通过纠错延长超导电路中的量子比特的寿命

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum error correction (QEC) can overcome the errors experienced by qubits1 and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations(2). The 'break-even' point of QEC-at which the lifetime of a qubit exceeds the lifetime of the constituents of the system-has so far remained out of reach(3). Although previous works have demonstrated elements of QEC(4-16), they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrodinger-cat states(17) of a superconducting resonator(18-21). We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the vertical bar 0 >(f) and vertical bar 1 >(f) Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.
机译:量子纠错(QEC)可以克服qubits1遇到的错误,因此是未来量子计算机的重要组成部分。为了实现QEC,使用具有精心定制的对称特性的量子态在高维空间中对qubit进行冗余编码。这些奇偶校验型观测值的投影测量提供了错误校正子信息,可以通过简单的操作来纠正错误(2)。到目前为止,QEC的“收支平衡”点(量子位的寿命超过系统组成部分的寿命)仍然遥不可及(3)。尽管以前的工作已经证明了QEC(4-16)的元素,但它们主要说明了QEC代码的签名或缩放属性,而不是测试系统随时间保留量子比特的能力。在这里,我们展示了一种QEC系统,该系统通过抑制因能量损失而导致的盈亏平衡点,该能量损失是由在超导谐振器(18-21)的Schrodinger-cat状态(17)的叠加中逻辑编码的量子位的能量损失引起的。我们通过使用实时反馈来编码,监视自然发生的错误,解码和纠正,从而实现完整的QEC协议。通过全过程层析成像技术测量,没有任何后选择,校正后的量子比特寿命为320微秒,比系统任何部分的寿命更长:比transmon的寿命长20倍,约长2.2倍比未经校正的逻辑编码的寿命要长,并且比最佳物理量子位的寿命(谐振器的Fock状态垂直条0>(f)和垂直条1>(f)Fock状态)的寿命大约长1.1倍。我们的结果说明了使用硬件有效的qubit编码而不是传统的QEC方案的好处。此外,他们从确定基本概念到探索驱动系统性能的指标以及实现容错系统所面临的挑战,推进了实验错误校正领域。

著录项

  • 来源
    《Nature》 |2016年第7617期|441-445|共5页
  • 作者单位

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA|PSL Res Univ, Mines ParisTech, Ctr Automat & Syst, 60 Blvd St Michel, F-75006 Paris, France;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA|INRIA Paris, QUANTIC Team, 2 Rue Simone Iff, F-75012 Paris, France;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA;

    Yale Univ, Dept Phys, New Haven, CT 06510 USA|Yale Univ, Dept Appl Phys, New Haven, CT 06510 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号