首页> 外文期刊>Nature >Holograms for acoustics
【24h】

Holograms for acoustics

机译:声学全息图

获取原文
获取原文并翻译 | 示例
           

摘要

Holographic techniques are fundamental to applications such as volumetric displays(1), high-density data storage and optical tweezers that require spatial control of intricate optical(2) or acoustic fields(3,4) within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront(5,6) in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography(7) skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources(3,4,8-12); however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.
机译:全息技术对于诸如体积显示(1),高密度数据存储和光镊之类的应用至关重要,这些应用要求在三维体积内对复杂的光学(2)或声场(3,4)进行空间控制。全息术的基础是以所需波阵面(5,6)的相位和/或幅度分布的空间存储方式,该方式使得当用合适的相干光源照射全息图时,该波阵面可以通过干涉重建。现代计算机生成的全息术(7)跳过了从物理场景中记录全息图的过程,而是在渲染所需的相位轮廓以进行重构之前先计算出所需的相位轮廓。在超声应用中,相位分布通常由离散且独立驱动的超声源生成(3,4,8-12);然而,这些只能以少量使用,这限制了在波前可以获得的复杂性或自由度。在这里,我们介绍了整体声全息图,可以重建衍射极限声压场,从而重建任意超声束。我们使用快速制造工艺制作全息图,并获得比商业相控阵光源高两个数量级的重建自由度。该技术便宜,适用于透射和反射元件,并且可以很好地扩展到更高的信息含量,更大的孔径和更高的功率。这些声全息图产生的复杂的三维压力和相位分布使我们能够演示控制水中的固体以及空气中的液体和固体的超声控制方法。我们希望声学全息图将在波束转向和功率的非接触式传输方面实现新功能,改善医学成像,并推动超声的新应用。

著录项

  • 来源
    《Nature》 |2016年第7621期|518-522|共5页
  • 作者单位

    Max Planck Inst Intelligent Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany;

    Max Planck Inst Intelligent Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany;

    Max Planck Inst Intelligent Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany;

    Max Planck Inst Intelligent Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany|Univ Stuttgart, Inst Phys Chem, Pfaffenwaldring 55, D-70569 Stuttgart, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号