首页> 外文期刊>Nature >Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry
【24h】

Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry

机译:电子的迈克尔逊-莫雷(Michelson-Morley)模拟物,利用俘获离子测试洛伦兹对称性

获取原文
获取原文并翻译 | 示例
           

摘要

对几乎所有测量来说,物理学家都假设绝对取向对测量结果没有影响。但超出物理学标准模型的某些理论预测,这一基本假设并不是在所有情况下都成立。本文作者利用从量子信息科学得到启发的一个方法以极高精度对电子的洛伦兹对称性进行了验证。在一个被束缚住的钙离子中,他们将一个电子波包分成两部分,在0.1秒后再将它们重组。在这0.1秒内,地球稍有转动,该波包的两部分有了不同的空间取向。洛伦兹对称性的破坏将在重组时改变干涉。从这种意义上来说,该实验程序与1887年的著名Michelson-Morley实验有关,在那个实验中关于发光乙醚的理论被否定。这一新的测量将使测量精度较以前的测量结果提高100倍,会将洛伦兹对称性的验证工作推向与标准模型的延伸相关的范畴。%All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the standard model of particle physics by requiring all particles and fields to be invariant under Lorentz transformations. The best-known tests of this important cornerstone of physics are Michelson-Morley-type experiments verifying the isotropy of the speed of light. For matter, Hughes-Drever-type experiments test whether the kinetic energy of particles is independent of the direction of their velocity, that is, whether their dispersion relations are isotropic. To provide more guidance for physics beyond the standard model, refined experimental verifications of Lorentz symmetry are desirable. Here we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron wave packet bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95 milliseconds. As the Earth rotates, the absolute spatial orientation of the two parts of the wave packet changes, and anisotropics in the electron dispersion will modify the phase of the interference signal. To remove noise, we prepare a pair of calcium ions in a superposition of two decoherence-free states, thereby rejecting magnetic field fluctuations common to both ions. After a 23-hour measurement, we find a limit of h × 11 millihertz (h is Planck's constant) on the energy variations, verifying the isotropy of the electron's dispersion relation at the level of one part in 10~(18), a 100-fold improvement on previous work. Alternatively, we can interpret our result as testing the rotational invariance of the Coulomb potential. Assuming that Lorentz symmetry holds for electrons and that the photon dispersion relation governs the Coulomb force, we obtain a fivefold-improved limit on anisotropics in the speed of light. Our result probes Lorentz symmetry violation at levels comparable to the ratio between the electroweak and Planck energy scales. Our experiment demonstrates the potential of quantum information techniques in the search for physics beyond the standard model.
机译:对几乎所有测量来说,物理学家都假设绝对取向对测量结果没有影响。但超出物理学标准模型的某些理论预测,这一基本假设并不是在所有情况下都成立。本文作者利用从量子信息科学得到启发的一个方法以极高精度对电子的洛伦兹对称性进行了验证。在一个被束缚住的钙离子中,他们将一个电子波包分成两部分,在0.1秒后再将它们重组。在这0.1秒内,地球稍有转动,该波包的两部分有了不同的空间取向。洛伦兹对称性的破坏将在重组时改变干涉。从这种意义上来说,该实验程序与1887年的著名Michelson-Morley实验有关,在那个实验中关于发光乙醚的理论被否定。这一新的测量将使测量精度较以前的测量结果提高100倍,会将洛伦兹对称性的验证工作推向与标准模型的延伸相关的范畴。%All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the standard model of particle physics by requiring all particles and fields to be invariant under Lorentz transformations. The best-known tests of this important cornerstone of physics are Michelson-Morley-type experiments verifying the isotropy of the speed of light. For matter, Hughes-Drever-type experiments test whether the kinetic energy of particles is independent of the direction of their velocity, that is, whether their dispersion relations are isotropic. To provide more guidance for physics beyond the standard model, refined experimental verifications of Lorentz symmetry are desirable. Here we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron wave packet bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95 milliseconds. As the Earth rotates, the absolute spatial orientation of the two parts of the wave packet changes, and anisotropics in the electron dispersion will modify the phase of the interference signal. To remove noise, we prepare a pair of calcium ions in a superposition of two decoherence-free states, thereby rejecting magnetic field fluctuations common to both ions. After a 23-hour measurement, we find a limit of h × 11 millihertz (h is Planck's constant) on the energy variations, verifying the isotropy of the electron's dispersion relation at the level of one part in 10~(18), a 100-fold improvement on previous work. Alternatively, we can interpret our result as testing the rotational invariance of the Coulomb potential. Assuming that Lorentz symmetry holds for electrons and that the photon dispersion relation governs the Coulomb force, we obtain a fivefold-improved limit on anisotropics in the speed of light. Our result probes Lorentz symmetry violation at levels comparable to the ratio between the electroweak and Planck energy scales. Our experiment demonstrates the potential of quantum information techniques in the search for physics beyond the standard model.

著录项

  • 来源
    《Nature》 |2015年第7536期|592-595a2|共5页
  • 作者单位

    Department of Physics, University of California, Berkeley, California 94720, USA,Quantum Metrology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan;

    Department of Physics, University of California, Berkeley, California 94720, USA;

    Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA,Petersburg Nuclear Physics Institute, Gatchina, Leningrad District 188300, Russia;

    Department of Physics, St Petersburg State University, Ulianovskaya 1, Petrodvorets, St Petersburg 198504, Russia;

    Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA,Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA;

    Department of Physics, University of California, Berkeley, California 94720, USA,Lawrence Livermore National Laboratory, Livermore, California 94550, USA;

    Department of Physics, University of California, Berkeley, California 94720, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号