首页> 外文期刊>Nature >Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A
【24h】

Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A

机译:两种小分子硫醇的代谢偶联为林可霉素A的生物合成提供了程序

获取原文
获取原文并翻译 | 示例
           

摘要

Low-molecular-mass thiols in organisms are well known for their redox-relevant role in protection against various endogenous and exogenous stresses. In eukaryotes and Gram-negative bacteria, the primary thiol is glutathione (GSH), a cysteinyl-containing tripep-tide. In contrast, mycothiol (MSH), a cysteinyl pseudo-disaccharide, is dominant in Gram-positive actinobacteria, including antibiotic-producing actinomycetes and pathogenic mycobacteria. MSH is equivalent to GSH, either as a cofactor or as a substrate, in numerous biochemical processes, most of which have not been characterized, largely due to the dearth of information concerning MSH-dependent proteins. Actinomycetes are able to produce another thiol, ergothio-neine (EGT), a histidine betaine derivative that is widely assimilated by plants and animals for variable physiological activities. The involvement of EGT in enzymatic reactions, however, lacks any precedent. Here we report that the unprecedented coupling of two bacterial thiols, MSH and EGT, has a constructive role in the biosynthesis of lincomycin A, a sulfur-containing lincosamide (C8 sugar) antibiotic that has been widely used for half a century to treat Gram-positive bacterial infections. EGT acts as a carrier to template the molecular assembly, and MSH is the sulfur donor for lincomycin maturation after thiol exchange. These thiols function through two unusual S-glycosylations that program lincosamide transfer, activation and modification, providing the first paradigm for £GT-associated biochemical processes and for the poorly understood MSH-dependent biotransformations, a newly described model that is potentially common in the incorporation of sulfur, an element essential for life and ubiquitous in living systems.%我们对天然产物或次级代谢物中的硫原子的生物合成来源还不是很了解。Mycothiol (MSH)是在革兰氏阳性放线菌中发现的一种“半胱氨酰假二糖”,这种含硫醇化合物与亲电子毒素的共轭会促进它们从细菌细胞中排出。放线菌还会产生另一种硫醇,即Ergothioneine(EGT)它是“组氨酸甜菜碱”的一种具有未知功能的衍生物。在这篇论文中,作者发现,MSH和EGT在“Lincomycin A”的生物合成中起重要作用。后者是一种含硫的抗生素,用于治疗不能接受青霉素的患者所发生的严重革兰氏阳性细菌感染。
机译:生物中的低分子硫醇以氧化还原相关的作用抵御各种内源性和外源性胁迫而闻名。在真核生物和革兰氏阴性细菌中,主要的硫醇是谷胱甘肽(GSH),一种含半胱氨酸的三肽。相反,半胱氨酸伪双糖霉菌硫醇(MSH)在革兰氏阳性放线菌中占主导地位,包括产生抗生素的放线菌和致病性分枝杆菌。在许多生化过程中,MSH相当于GSH(作为辅助因子或作为底物),大部分尚未表征,这主要是由于缺乏有关MSH依赖性蛋白的信息。放线菌能够产生另一种硫醇,麦角硫醇-神经氨酸(EGT),一种组氨酸甜菜碱衍生物,被植物和动物广泛吸收,具有可变的生理活性。但是,EGT参与酶促反应尚无先例。在这里,我们报告说,两种细菌硫醇(MSH和EGT)的空前结合在林可霉素A(一种含硫的林可酰胺(C8糖)抗生素)的生物合成中具有建设性作用,该抗生素已被广泛使用了半个世纪,用于治疗革兰氏病。阳性细菌感染。 EGT充当模板分子组装的载体,而MSH是硫醇交换后林可霉素成熟的硫供体。这些硫醇通过两种不寻常的S-糖基化功能进行编程,可对林可酰胺的转移,活化和修饰进行编程,为£GT相关的生化过程和对MSH依赖的生物转化(尚未广为人知的新描述的模型)提供了第一个范例。硫,是生命必不可少的元素,在生物系统中无处不在。%我们对天然产物或次生代谢的硫原子的生物合成来源还不是很了解。Mycothiol(MSH)在革兰氏阳性放线菌中发现的一种“半胱氨酰胺取代假二糖”,这种含硫醇化合物与亲电子毒素的共轭会促进其从细菌细胞中排出。放线菌将会产生另一种硫醇,即Ergothioneine(EGT)它是“组氨酸甜菜碱”的一种具有未知功能的衍生物。在这篇论文中,作者发现,MSH和EGT在“ Lincomycin A”的生物合成中起重要作用。是一种含硫的抗生素,用于治疗不能接受青霉素的患者所发生的严重革兰氏阳性细菌感染。

著录项

  • 来源
    《Nature》 |2015年第7537期|115-119a2|共6页
  • 作者单位

    State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China;

    State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China;

    State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China;

    Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China;

    State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China,Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号