首页> 外文期刊>Nature >Phonon counting and intensity interferometry of a nanomechanical resonator
【24h】

Phonon counting and intensity interferometry of a nanomechanical resonator

机译:纳米机械谐振器的声子计数和强度干涉法

获取原文
获取原文并翻译 | 示例
           

摘要

In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms(1) to secure quantum communication(2). Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss(3) to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light(4). As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes(5), as well as to develop technologies for precision sensing(6) and quantum information processing(7,8). Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser(9). Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled(10), including the generation and heralding of single-phonon Fock states(11) and the quantum entanglement of remote mechanical elements(12,13).
机译:在光学领域,测量光(光子)单个量子的能力实现了许多应用,从活生物体内的动态成像(1)到确保量子通信(2)。开拓性的光子计数实验,例如Hanbury Brown和Twiss(3)进行的强度干涉测量以测量可见恒星的角宽度,在我们对光的全量子本质的理解中发挥了关键作用(4)。与原子尺度上的物质一样,量子力学定律也支配着宏观机械物体的特性,从而为机械传感器和换能器的灵敏度提供了基本的量子极限。当前腔光学力学的研究旨在利用光来探索从千克质量镜到纳米级膜的机械系统的量子特性(5),并开发用于精密传感(6)和量子信息处理的技术(7)。 ,8)。在这里,我们使用光学探针和单光子检测来研究硅纳米机械谐振器中的声发射和吸收过程,并执行与Hanbury Brown和Twiss相似的测量,以测量谐振器经历声子时发射声子的相关性。参数不稳定性在形式上等同于激光器(9)。由于光与机械运动的腔增强耦合,所以这种有效的声子计数技术具有0.89 +/- 0.05的噪声等效声子灵敏度。通过对该方法的直接改进,将启用使用介观机械谐振器的各种量子态工程任务(10),包括单声子Fock态的生成和预示(11)以及远程机械元素的量子纠缠(12, 13)。

著录项

  • 来源
    《Nature》 |2015年第7548期|522-525|共4页
  • 作者单位

    CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA|CALTECH, Thomas J Watson Senior Lab Appl Phys, Pasadena, CA 91125 USA;

    CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA|CALTECH, Thomas J Watson Senior Lab Appl Phys, Pasadena, CA 91125 USA;

    CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA|CALTECH, Thomas J Watson Senior Lab Appl Phys, Pasadena, CA 91125 USA;

    CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA|CALTECH, Thomas J Watson Senior Lab Appl Phys, Pasadena, CA 91125 USA|Univ Vienna, Fac Phys, Vienna Ctr Quantum Sci & Technol VCQ, A-1090 Vienna, Austria;

    CALTECH, Thomas J Watson Senior Lab Appl Phys, Pasadena, CA 91125 USA|Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA;

    CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA;

    CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA;

    CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA|CALTECH, Thomas J Watson Senior Lab Appl Phys, Pasadena, CA 91125 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号