首页> 外文期刊>Nature >High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
【24h】

High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity

机译:具有晶圆级均匀性的高迁移率三原子厚半导体薄膜

获取原文
获取原文并翻译 | 示例
           

摘要

The large-scale growth of semiconducting thin films forms the basis of modern electronics and optoelectronics. A decrease in film thickness to the ultimate limit of the atomic, sub-nanometre length scale, a difficult limit for traditional semiconductors (such as Si and GaAs), would bring wide benefits for applications in ultrathin and flexible electronics, photovoltaics and display technology'. For this, transition-metal dichalcogenides (TMDs), which can form stable three-atom-thick monolayers(4), provide ideal semiconducting materials with high electrical carrier mobility'-", and their largescale growth on insulating substrates would enable the batch fabrication of atomically thin high-performance transistors and photodetectors on a technologically relevant scale without film transfer. In addition, their unique electronic band structures provide novel ways of enhancing the functionalities of such devices, including the large excitonic effect", bandgap modulation", indirect-todirect bandgap transition", piezoelectricity' and valleytronics'. However, the large-scale growth of monolayer TMD films with spatial homogeneity and high electrical performance remains an unsolved challenge. Here we report the preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide (Mo52) and tungsten disulphide, grown directly on insulating MO, substrates, with excellent spatial homogeneity over the entire films. They are grown with a newly developed, metal-organic chemical vapour deposition technique, and show high electrical performance, including an electron mobility of 30 cm(2) V-1 s(1) at room temperature and 114 cm(2) V-1 s(-1) at 90K for Mo52, with little dependence on position or channel length. With the use of these films we successfully demonstrate the wafer-scale batch fabrication of highperformance monolayer Mo52 field-effect transistors with a 99% device yield and the multi-level fabrication of vertically stacked transistor devices for three-dimensional circuitry. Our work is a step towards the realization of atomically thin integrated circuitry.
机译:半导体薄膜的大规模增长形成了现代电子学和光电子学的基础。将薄膜厚度减小到原子级以下的极限,这是传统半导体(例如Si和GaAs)的一个困难的极限,这将为超薄和柔性电子,光伏和显示技术的应用带来广泛的好处。 。为此,可以形成稳定的三原子厚度单层(4)的过渡金属二硫化碳(TMD),提供了具有高电载流子迁移率的理想半导体材料,并且它们在绝缘基板上的大规模生长将使分批制造成为可能原子薄的高性能晶体管和光电检测器,具有技术上的相关规模,而无需进行膜转移。此外,它们独特的电子能带结构提供了增强此类设备功能的新颖方法,包括“大激子效应”,“带隙调制”,“间接定向带隙跃迁”,“压电性”和“山谷电子学”。然而,具有空间均匀性和高电性能的单层TMD膜的大规模生长仍然是尚未解决的挑战。在这里,我们报告了单层二硫化钼(Mo52)和二硫化钨高迁移率4英寸晶圆级薄膜的制备,这些薄膜直接在绝缘MO衬底上生长,整个薄膜具有出色的空间均匀性。它们采用最新开发的金属有机化学气相沉积技术生长,并具有很高的电性能,包括室温下30 cm(2)V-1 s(1)和114 cm(2)V-的电子迁移率Mo52在90K时为1 s(-1),对位置或通道长度的依赖性很小。通过使用这些薄膜,我们成功地演示了具有99%器件良率的高性能单层Mo52场效应晶体管的晶圆级批量制造以及用于三维电路的垂直堆叠晶体管器件的多层制造。我们的工作是朝着实现原子薄集成电路迈出的一步。

著录项

  • 来源
    《Nature》 |2015年第7549期|656-660|共5页
  • 作者单位

    Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA;

    Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA;

    Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA;

    Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA;

    Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA;

    Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA|Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA;

    Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA;

    Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA|Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA;

    Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA|Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号