首页> 外文期刊>Nature >Cyanate as an energy source for nitrifiers
【24h】

Cyanate as an energy source for nitrifiers

机译:氰酸盐作为硝化器的能源

获取原文
获取原文并翻译 | 示例
           

摘要

Ammonia- and nitrite-oxidizing microorganisms are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and have essential roles in the global biogeochemical nitrogen cycle. The physiology of nitrifiers has been intensively studied, and urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis(1) using cyanate as the sole source of energy and reductant; to our knowledge, the first organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems(2), is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade also containing cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite oxidizers supply cyanase-lacking ammonia oxidizers with ammonium from cyanate, which is fully nitrified by this microbial consortium through reciprocal feeding. By screening a comprehensive set of more than 3,000 publically available metagenomes from environmental samples, we reveal that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitri-fying microorganisms, and suggest a previously unrecognized importance of cyanate in cycling of nitrogen compounds in the environment.
机译:氧化氨和亚硝酸盐的微生物共同负责将氨通过亚硝酸盐有氧氧化为硝酸盐,并在全球生物地球化学氮循环中发挥重要作用。硝化器的生理学已被深入研究,尿素和氨是唯一公认的促进氨氧化细菌和古细菌有氧生长的能源。在这里,我们报告了使用氰化物作为唯一的能源和还原剂的氨氧化金缕藻Nitrososphaera gargensis(1)的纯培养物的有氧生长;据我们所知,第一个已知这样做的生物。氰酸盐是水生和陆地生态系统中潜在的重要氮还原源(2),通过添加这种化合物后会诱导的氰化酶将硝基甲烷转化为亚硝酸盐(Nitrososphaera gargensis)中的铵和二氧化碳。在氰化酶基因家族中,该氰化酶是独特进化枝的成员,该进化枝也包含硝化螺菌属亚硝酸盐氧化细菌的氰化酶。我们通过共培养实验证明,这些亚硝酸盐氧化剂可从氰酸盐中提供缺乏氰化酶的氨氧化剂和铵盐,而铵盐则由该微生物联合体通过相互进料而被充分硝化。通过从环境样本中筛选出超过3,000个公共可用的基因组的全面集合,我们揭示了与这些硝化器的氰化酶成簇的氰化酶编码基因在环境中广泛分布。我们的研究结果表明,亚硝化微生物具有出乎意料的新陈代谢功能,并表明了以前未认识到的氰酸酯在环境中氮化合物循环中的重要性。

著录项

  • 来源
    《Nature》 |2015年第7563期|105-108|共4页
  • 作者单位

    Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, A-1090 Vienna, Austria;

    Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, A-1090 Vienna, Austria;

    UFZ Helmholtz Ctr Environm Res, Dept Prote, D-04318 Leipzig, Germany;

    Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, A-1090 Vienna, Austria;

    Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, A-1090 Vienna, Austria;

    UFZ Helmholtz Ctr Environm Res, Dept Prote, D-04318 Leipzig, Germany|Aalborg Univ, Dept Chem & Biosci, Fac Engn & Sci, DK-9220 Aalborg, Denmark|UFZ Helmholtz Ctr Environm Res, Dept Metabol, D-04318 Leipzig, Germany;

    Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, A-1090 Vienna, Austria;

    Aalborg Univ, Dept Chem & Biosci, Fac Engn & Sci, DK-9220 Aalborg, Denmark;

    Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, A-1090 Vienna, Austria;

    Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, A-1090 Vienna, Austria;

    Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, A-1090 Vienna, Austria;

    Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, A-1090 Vienna, Austria;

    Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Microbial Ecol, A-1090 Vienna, Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号