首页> 外文期刊>Nature >Methane storage in flexible metal-organic frameworks with intrinsic thermal management
【24h】

Methane storage in flexible metal-organic frameworks with intrinsic thermal management

机译:具有固有热管理功能的柔性金属-有机框架中的甲烷存储

获取原文
获取原文并翻译 | 示例
           

摘要

As a cleaner, cheaper, and more globally evenly distributed fuel, natural gas has considerable environmental, economic, and political advantages over petroleum as a source of energy for the transportation sector(1,2). Despite these benefits, its low volumetric energy density at ambient temperature and pressure presents substantial challenges, particularly for light-duty vehicles with little space available for on-board fuel storage(3). Adsorbed natural gas systems have the potential to store high densities of methane (CH4, the principal component of natural gas) within a porous material at ambient temperature and moderate pressures(4). Although activated carbons, zeolites, and metal-organic frameworks have been investigated extensively for CH4 storage(5-8), there are practical challenges involved in designing systems with high capacities and in managing the thermal fluctuations associated with adsorbing and desorbing gas from the adsorbent. Here, we use a reversible phase transition in a metal-organic framework to maximize the deliverable capacity of CH4 while also providing internal heat management during adsorption and desorption. In particular, the flexible compounds Fe(bdp) and Co(bdp) (bdp(2-) = 1,4-benzenedipyrazolate) are shown to undergo a structural phase transition in response to specific CH4 pressures, resulting in adsorption and desorption isotherms that feature a sharp 'step'. Such behaviour enables greater storage capacities than have been achieved for classical adsorbents(9), while also reducing the amount of heat released during adsorption and the impact of cooling during desorption. The pressure and energy associated with the phase transition can be tuned either chemically or by application of mechanical pressure.
机译:作为一种更清洁,更便宜,全球分布更均匀的燃料,天然气比石油作为交通运输业的能源具有明显的环境,经济和政治优势(1,2)。尽管具有这些优点,但其在环境温度和压力下的低体积能量密度仍然提出了严峻的挑战,特别是对于轻型车辆,其车上燃料存储空间很小(3)。吸附的天然气系统具有在环境温度和中等压力下在多孔材料中存储高密度甲烷(CH4,天然气的主要成分)的潜力(4)。尽管已经对CH4的储存进行了广泛的活性炭,沸石和金属有机骨架的研究(5-8),但在设计高容量系统以及管理与吸附剂中气体的吸附和解吸相关的热波动方面仍存在实际挑战。在这里,我们在金属有机框架中使用可逆相变,以最大化CH4的可传递容量,同时在吸附和解吸过程中提供内部热量管理。特别是,柔性化合物Fe(bdp)和Co(bdp)(bdp(2-)= 1,4-苯二吡唑酸酯)已显示出响应特定的CH4压力而经历结构相变,从而导致吸附和解吸等温线具有鲜明的“脚步”。与传统吸附剂(9)相比,这种行为可以实现更大的存储容量,同时还可以减少吸附过程中释放的热量以及解吸过程中冷却的影响。与相变有关的压力和能量可以通过化学方法或通过施加机械压力来调节。

著录项

  • 来源
    《Nature》 |2015年第7578期|357-361|共5页
  • 作者单位

    Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA;

    Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA;

    Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA;

    NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA;

    Aix Marseille Univ, CNRS, Lab MADIREL UMR 7246, Ctr St Jerome, F-13397 Marseille 20, France;

    Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA;

    Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA;

    Paul Scherrer Inst, Lab Synchrotron Radiat Condensed Matter, Swiss Light Source, CH-5232 Villigen, Switzerland;

    CNR, Ist Cristallog, I-22100 Como, Italy;

    NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA|Univ Delaware, Chem & Biomol Engn, Newark, DE 19716 USA;

    Aix Marseille Univ, CNRS, Lab MADIREL UMR 7246, Ctr St Jerome, F-13397 Marseille 20, France;

    Univ Insubria, Dipartimento Sci & Alta Tecnol, I-22100 Como, Italy|To Sca Lab, I-22100 Como, Italy;

    Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号