首页> 外文期刊>Nature >Molecular photons interfaced with alkali atoms
【24h】

Molecular photons interfaced with alkali atoms

机译:分子光子与碱原子接触

获取原文
获取原文并翻译 | 示例
           

摘要

Future quantum communication will rely on the integration of single-photon sources, quantum memories and systems with strong single-photon nonlinearities. Two key parameters are crucial for the single-photon source: a high photon flux with a very small bandwidth, and a spectral match to other components of the system. Atoms or ions may act as single-photon sources-owing to their narrowband emission and their intrinsic spectral match to other atomic systems-and can serve as quantum nonlinear elements. Unfortunately, their emission rates are still limited, even for highly efficient cavity designs. Single solid-state emitters such as single organic dye molecules are significantly brighter and allow for narrowband photons; they have shown potential in a variety of quantum optical experiments but have yet to be interfaced with other components such as stationary memory qubits. Here we describe the optical interaction between Fourier-limited photons from a single organic molecule and atomic alkali vapours, which can constitute an efficient quantum memory. Single-photon emission rates reach up to several hundred thousand counts per second and show a high spectral brightness of 30,000 detectable photons per second per megahertz of bandwidth. The molecular emission is robust and we demonstrate perfect tuning to the spectral transitions of the sodium D line and efficient filtering, even for emitters at ambient conditions. In addition, we achieve storage of molecular photons originating from a single diben-zanthanthrene molecule in atomic sodium vapour. Given the large set of molecular emission lines matching to atomic transitions, our results enable the combination of almost ideal single-photon sources with various atomic vapours, such that experiments with giant single-photon nonlinearities, mediated, for example, by Rydberg atoms, become feasible.
机译:未来的量子通信将依赖于单光子源,量子存储器和具有强大单光子非线性的系统的集成。对于单光子源来说,两个关键参数至关重要:高光子通量和非常小的带宽,以及与系统其他组件的光谱匹配。由于原子或离子的窄带发射和与其他原子系统的固有光谱匹配,它们可以用作单光子源,并且可以用作量子非线性元素。不幸的是,即使对于高效腔设计,它们的发射率仍然受到限制。诸如单个有机染料分子之类的单个固态发射体明显更亮,并允许窄带光子。它们已经在各种量子光学实验中显示出了潜力,但尚未与其他组件(例如固定存储量子位)连接。在这里,我们描述了来自单个有机分子的傅立叶限制光子与原子碱蒸气之间的光学相互作用,这可以构成有效的量子存储。单光子发射速率高达每秒几十万个计数,并显示出每兆赫兹带宽每秒30,000可检测光子的高光谱亮度。分子发射稳健,我们证明了钠D线光谱跃迁的完美调谐和有效过滤,即使对于环境条件下的发射器也是如此。此外,我们实现了在原子钠蒸气中存储源自单个二苯并-镧系元素的分子光子。考虑到与原子跃迁相匹配的大量分子发射谱线,我们的结果使几乎理想的单光子源与各种原子蒸气结合在一起,从而使例如由里德伯格原子介导的具有巨大单光子非线性的实验成为可能。可行。

著录项

  • 来源
    《Nature》 |2014年第7498期|66-70|共5页
  • 作者单位

    3. Physikalisches Institut, Universitaet Stuttgart, Stuttgart Research Center of Photonic Engineering (SCoPE), and the Center for Integrated Quantum Science and Technology (IQST), Pfaffenwaldring 57, 70569 Stuttgart, Germany;

    3. Physikalisches Institut, Universitaet Stuttgart, Stuttgart Research Center of Photonic Engineering (SCoPE), and the Center for Integrated Quantum Science and Technology (IQST), Pfaffenwaldring 57, 70569 Stuttgart, Germany;

    3. Physikalisches Institut, Universitaet Stuttgart, Stuttgart Research Center of Photonic Engineering (SCoPE), and the Center for Integrated Quantum Science and Technology (IQST), Pfaffenwaldring 57, 70569 Stuttgart, Germany ,Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany;

    3. Physikalisches Institut, Universitaet Stuttgart, Stuttgart Research Center of Photonic Engineering (SCoPE), and the Center for Integrated Quantum Science and Technology (IQST), Pfaffenwaldring 57, 70569 Stuttgart, Germany ,Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号