首页> 外文期刊>Nature >Sensory stimulation shifts visual cortex from synchronous to asynchronous states
【24h】

Sensory stimulation shifts visual cortex from synchronous to asynchronous states

机译:感觉刺激将视觉皮层从同步状态转变为异步状态

获取原文
获取原文并翻译 | 示例
           

摘要

In the mammalian cerebral cortex, neural responses are highly variable during spontaneous activity and sensory stimulation. To explain this variability, the cortex of alert animals has been proposed to be in an asynchronous high-conductance state in which irregular spiking arises from the convergence of large numbers of uncorrelated excitatory and inhibitory inputs onto individual neurons. Signatures of this state are that a neuron's membrane potential (V_m) hovers just below spike threshold, and its aggregate synaptic input is nearly Gaussian, arising from many uncorrelated inputs. Alternatively, irregular spiking could arise from infrequent correlated input events that elicit large fluctuations in V_m. To distinguish between these hypotheses, we developed a technique to perform whole-cell V_m measurements from the cortex of behaving monkeys, focusing on primary visual cortex (V1) of monkeys performing a visual fixation task. Here we show that, contrary to the predictions of an asynchronous state, mean V_m during fixation was far from threshold (14 mV) and spiking was triggered by occasional large spontaneous fluctuations. Distributions of V_m values were skewed beyond that expected for a range of Gaussian input, but were consistent with synaptic input arising from infrequent correlated events. Furthermore, spontaneous fluctuations in V_m were correlated with the surrounding network activity, as reflected in simultaneously recorded nearby local field potential. Visual stimulation, however, led to responses more consistent with an asynchronous state: mean V_m approached threshold, fluctuations became more Gaussian, and correlations between single neurons and the surrounding network were disrupted. These observations show that sensory drive can shift a common cortical circuitry from a synchronous to an asynchronous state.%在自然活动和感官刺激过程中,哺乳动物大脑皮层中的神经反应是高度可变的。用来解释这一现象的主导性假说是,警觉的动物的大脑皮层处于一种非同步的高传导状态。Nicholas Priebe及同事采用全细胞记录获得了对执行一项固定任务(fixation task)的猴子的初级视皮层中单一神经元的突触输入的直接观察结果,他们的结果支持另一个假说:在没有感官刺激的固定(fixation)过程中,神经脉冲是由非经常的关联事件驱动的。但存在视觉刺激时,该皮层就会从同步状态变成非同步状态。这一发现表明,同一皮层回路能根据感官驱动因素在同步状态和非同步状态之间变化。
机译:在哺乳动物的大脑皮层中,神经反应在自发活动和感觉刺激过程中变化很大。为了解释这种可变性,已经提出了警惕动物的皮层处于异步高电导状态,其中不规则的尖峰是由于大量不相关的兴奋性和抑制性输入汇聚到单个神经元上而引起的。这种状态的特征是神经元的膜电位(V_m)徘徊在尖峰阈值之下,并且其神经突触的总输入几乎是高斯的,这是由许多不相关的输入引起的。替代地,不频繁的尖峰可能是由引起V_m大波动的不频繁的相关输入事件引起的。为了区分这些假设,我们开发了一种从行为猴子的皮质执行全细胞V_m测量的技术,重点是执行视觉固定任务的猴子的主要视觉皮质(V1)。在这里,我们表明,与异步状态的预测相反,固定期间的平均V_m远未达到阈值(14 mV),并且尖峰是由偶然的大自发性波动触发的。 V_m值的分布偏斜超出了一系列高斯输入的预期值,但与偶发相关事件引起的突触输入一致。此外,V_m的自发波动与周围网络活动相关,这反映在同时记录的附近本地场电势中。然而,视觉刺激导致响应与异步状态更加一致:平均值V_m接近阈值,波动变得更加高斯,单个神经元与周围网络之间的相关性被破坏。这些观察结果表明,感觉驱动可以使普通的皮质电路从同步状态转变为异步状态。%在自然活动和感官刺激过程中,哺乳动物大脑皮层中的神经反应是高度可变的。 Nicholas Priebe及同事采用全细胞记录获得了对执行一项固定任务(固定任务)的猴子的初级视皮层中单一神经元的突触输入的直接观察结果,他们的结果支持另一个假说:在没有感官刺激的固定(fixation)过程中,神经脉冲是由非经常的关联事件驱动的。但存在视觉刺激时,该皮层就会从同步状态变成非同步状态。这一发现表明,同一皮层回路能根据感官驱动因素在同步状态和非同步状态之间变化。

著录项

  • 来源
    《Nature》 |2014年第7499期|226-229A2|共5页
  • 作者单位

    Center for Perceptual Systems, University of Texas, Austin, Texas 78712, USA,Department of Neuroscience, College of Natural Sciences, University of Texas, Austin, Texas 78712, USA;

    Center for Perceptual Systems, University of Texas, Austin, Texas 78712, USA,Department of Neuroscience, College of Natural Sciences, University of Texas, Austin, Texas 78712, USA,Department of Psychology, University of Texas, Austin, Texas 78712, USA;

    Center for Perceptual Systems, University of Texas, Austin, Texas 78712, USA,Department of Neuroscience, College of Natural Sciences, University of Texas, Austin, Texas 78712, USA;

    Center for Perceptual Systems, University of Texas, Austin, Texas 78712, USA,Department of Neuroscience, College of Natural Sciences, University of Texas, Austin, Texas 78712, USA,Department of Psychology, University of Texas, Austin, Texas 78712, USA;

    Center for Perceptual Systems, University of Texas, Austin, Texas 78712, USA,Department of Neuroscience, College of Natural Sciences, University of Texas, Austin, Texas 78712, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号