首页> 外文期刊>Nature >Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube
【24h】

Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube

机译:在单个跨膜氮化硼纳米管中测量的巨大渗透能转换

获取原文
获取原文并翻译 | 示例
           

摘要

New models of fluid transport are expected to emerge from the confinement of liquids at the nanoscale, with potential applications in ultra tilt rat ion, desalination and energy conversion. Nevertheless, advancing our fundamental understanding of fluid transport on the smallest scales requires mass and ion dynamics to be ultimately characterized across an individual channel to avoid averaging over many pores. A major challenge for nanofluidics thus lies in building distinct and well-controlled nanochannels, amenable to the systematic exploration of their properties. Here we describe the fabrication and use of a hierarchical nanofluidic device made of a boron nitride nanotube that pierces an ultrathin membrane and connects two fluid reservoirs. Such a transmem-brane geometry allows the detailed study of fluidic transport through a single nanotube under diverse forces, including electric fields, pressure drops and chemical gradients. Using this device, we discover very large, osmotically induced electric currents generated by salinity gradients, exceeding by two orders of magnitude their pressure-driven counterpart. We show that this result originates in the anomalously high surface charge carried by the nanotube's internal surface in water at large Ph, which we independently quantify in conductance measurements. The nano-assembly route using nanostructures as building blocks opens the way to studying fluid, ionic and molecule transport on the nanoscale, and may lead to biomimetic functionalities. Our results furthermore suggest that boron nitride nanetubes could be used as membranes for osmotic power harvesting under salinity gradients.
机译:预计在纳米级液体的局限下将出现新的流体传输模型,其在超倾角离子化,脱盐和能量转换中的潜在应用。然而,要使我们对最小尺度的流体传输有基本的了解,就需要最终在单个通道上对质量和离子动力学进行最终表征,以避免在许多孔中求平均值。因此,纳米流体的主要挑战在于建立可控制其性质的独特且受控良好的纳米通道。在这里,我们描述了由氮化硼纳米管制成的分级纳米流体装置的制造和使用,该装置穿透了超薄膜并连接了两个储液罐。这样的跨膜几何形状允许在各种力(包括电场,压降和化学梯度)下详细研究通过单个纳米管的流体传输。使用该装置,我们发现由盐度梯度产生的非常大的渗透感应电流,比其压力驱动的对应电流高两个数量级。我们表明,该结果源自纳米管的内表面在较大pH值的水中异常高的表面电荷,我们在电导测量中对其进行了独立量化。使用纳米结构作为构建模块的纳米组装路线为研究纳米级的流体,离子和分子运输开辟了道路,并可能导致仿生功能。我们的结果进一步表明,氮化硼纳米管可用作盐度梯度下渗透力收集的膜。

著录项

  • 来源
    《Nature》 |2013年第7438期|455-458|共4页
  • 作者单位

    Institut Lumiere Matiere, UMR5306 University Lyon 1-CNRS, 69622 Villeurbanne, France;

    Institut Lumiere Matiere, UMR5306 University Lyon 1-CNRS, 69622 Villeurbanne, France;

    Institut Lumiere Matiere, UMR5306 University Lyon 1-CNRS, 69622 Villeurbanne, France;

    Institut Lumiere Matiere, UMR5306 University Lyon 1-CNRS, 69622 Villeurbanne, France;

    lnstitut Neel, UPR CNRS 2940 and Universite Joseph Fourier, 38042 Grenoble, France;

    Institut Lumiere Matiere, UMR5306 University Lyon 1-CNRS, 69622 Villeurbanne, France;

    Institut Lumiere Matiere, UMR5306 University Lyon 1-CNRS, 69622 Villeurbanne, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号