首页> 外文期刊>Nature >Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide
【24h】

Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide

机译:低温水相甲醇脱氢制氢和二氧化碳

获取原文
获取原文并翻译 | 示例
           

摘要

氢气可以很容易被PEM(质子交换膜)燃料电rn池转换成能量,但其在运输和存储方面的不rn便限制了人们对“氢经济”的兴趣。甲醇(含rn12.6%的氢,是一种在室温下容易处理的液体rn)有可能是解决这一问题的答案。Matthias rnBeller及其同事描述了一个高效的水相甲醇脱rn氢过程,它由钌复合物催化,有可能形成一种rn实用的氢存储和供应系统的基础。重要的是,rn因为该反应在95℃或更低温度和环境压力下rn进行,所以它可以让甲醇直接用在PEM燃料电rn池中。%Hydrogen produced from renewable resources is a promising potential source of clean energy. With the help of low-temperature proton-exchange membrane fuel cells, molecular hydrogen can be converted efficiently to produce electricity. The implementation of sustainable hydrogen production and subsequent hydrogen conversion to energy is called "hydrogen economy". Unfortunately, its physical properties make the transport and handling of hydrogen gas difficult. To overcome this, methanol can be used as a material for the storage of hydrogen, because it is a liquid at room temperature and contains 12.6 per cent hydrogen. However, the state-of-the-art method for the production of hydrogen from methanol (methanol reforming) is conducted at high temperatures (over 200 degrees Celsius) and high pressures (25-50 bar), which limits its potential applications. Here we describe an efficient low-temperature aqueous-phase methanol dehydrogenation process, which is facilitated by ruthenium complexes. Hydrogen generation by this method proceeds at 65-95 degrees Celsius and ambient pressure with excellent catalyst turnover frequencies (4,700 per hour) and turnover numbers (exceeding 350,000). This would make the delivery of hydrogen on mobile devices-and hence the use of methanol as a practical hydrogen carrier-feasible.
机译:氢气可以很容易被PEM(质子交换膜)燃料电rn池转换成能量,但其在运输和存储方面的不rn便限制了人们对“氢经济”的兴趣。甲醇(含rn12.6%的氢,是一种在室温下容易处理的液体rn)有可能是解决这一问题的答案。Matthias rnBeller及其同事描述了一个高效的水相甲醇脱rn氢过程,它由钌复合物催化,有可能形成一种rn实用的氢存储和供应系统的基础。重要的是,rn因为该反应在95℃或更低温度和环境压力下rn进行,所以它可以让甲醇直接用在PEM燃料电rn池中。%Hydrogen produced from renewable resources is a promising potential source of clean energy. With the help of low-temperature proton-exchange membrane fuel cells, molecular hydrogen can be converted efficiently to produce electricity. The implementation of sustainable hydrogen production and subsequent hydrogen conversion to energy is called "hydrogen economy". Unfortunately, its physical properties make the transport and handling of hydrogen gas difficult. To overcome this, methanol can be used as a material for the storage of hydrogen, because it is a liquid at room temperature and contains 12.6 per cent hydrogen. However, the state-of-the-art method for the production of hydrogen from methanol (methanol reforming) is conducted at high temperatures (over 200 degrees Celsius) and high pressures (25-50 bar), which limits its potential applications. Here we describe an efficient low-temperature aqueous-phase methanol dehydrogenation process, which is facilitated by ruthenium complexes. Hydrogen generation by this method proceeds at 65-95 degrees Celsius and ambient pressure with excellent catalyst turnover frequencies (4,700 per hour) and turnover numbers (exceeding 350,000). This would make the delivery of hydrogen on mobile devices-and hence the use of methanol as a practical hydrogen carrier-feasible.

著录项

  • 来源
    《Nature》 |2013年第7439期|85-89B2|共6页
  • 作者单位

    Leibniz-lnstitut fur Katalyse Eingetragener Verein an der Universitat Rostock, Albert-Einstein Strasse 29a, Rostock, 18059 Germany;

    Leibniz-lnstitut fur Katalyse Eingetragener Verein an der Universitat Rostock, Albert-Einstein Strasse 29a, Rostock, 18059 Germany,lstituto di Chimica Biomolecolare, CNR, traversa La Crucca 3, Sassari 07040, Italy;

    Leibniz-lnstitut fur Katalyse Eingetragener Verein an der Universitat Rostock, Albert-Einstein Strasse 29a, Rostock, 18059 Germany;

    Leibniz-lnstitut fur Katalyse Eingetragener Verein an der Universitat Rostock, Albert-Einstein Strasse 29a, Rostock, 18059 Germany;

    Leibniz-lnstitut fur Katalyse Eingetragener Verein an der Universitat Rostock, Albert-Einstein Strasse 29a, Rostock, 18059 Germany;

    Dipartimento di Chimica e Farmacia, Universita di Sassari, Sassari 07100, Italy;

    Leibniz-lnstitut fur Katalyse Eingetragener Verein an der Universitat Rostock, Albert-Einstein Strasse 29a, Rostock, 18059 Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号