首页> 外文期刊>Nature >Heat dissipation in atomic-scale junctions
【24h】

Heat dissipation in atomic-scale junctions

机译:原子尺度结的散热

获取原文
获取原文并翻译 | 示例
           

摘要

Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms for testing quantum transport theories that are required to describe charge and energy transfer in novel functional nanometre-scale devices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized owing to experimental challenges. Here we use custom-fabricated scanning probes with integrated nanoscale thermocouples to investigate heat dissipation in the electrodes of single-molecule ('molecular') junctions. We find that if the junctions have transmission characteristics that are strongly energy dependent, this heat dissipation is asymmetric—that is, unequal between the electrodes—and also dependent on both the bias polarity and the identity of the majority charge carriers (electrons versus holes). In contrast, junctions consisting of only a few gold atoms ('atomic junctions') whose transmission characteristics show weak energy dependence do not exhibit appreciable asymmetry. Our results unambiguously relate the electronic transmission characteristics of atomic-scale junctions to their heat dissipation properties, establishing a framework for understanding heat dissipation in a range of mesoscopic systems where transport is elastic—that is, without exchange of energy in the contact region. We anticipate that the techniques established here will enable the study of Peltier effects at the atomic scale, a field that has been barely explored experimentally despite interesting theoretical predictions. Furthermore, the experimental advances described here are also expected to enable the study of heat transport in atomic and molecular junctions—an important and challenging scientific and technological goal that has remained elusive.
机译:原子和单分子结代表了电路微型化的最终极限。它们还是测试量子传输理论的理想平台,量子传输理论描述了新型功能纳米级器件中的电荷和能量转移。最近的工作已经成功地探索了原子尺度结中的电和热电现象。然而,由于实验上的挑战,原子级设备中的散热和传输仍然很差。在这里,我们使用定制的带有集成纳米级热电偶的扫描探针来研究单分子(“分子”)结的电极中的散热。我们发现,如果结具有与能量密切相关的传输特性,则这种散热是不对称的,即电极之间不相等,并且还取决于偏置极性和多数电荷载流子的特性(电子与空穴) 。相反,仅由几个金原子组成的结(“原子结”)的传输特性显示出较弱的能量依赖性,但并未表现出明显的不对称性。我们的结果明确地将原子尺度结的电子传输特性与其散热特性相关联,从而建立了一个框架,用于理解在传输是弹性的介观系统(即在接触区域中没有能量交换)的一系列介观系统中的散热。我们预计,此处建立的技术将使人们能够在原子级上研究珀耳帖效应,尽管进行了有趣的理论预测,但仍未进行过实验性研究。此外,这里描述的实验进展也有望使人们能够研究原子和分子结中的热传递,这是一项重要而具有挑战性的科学和技术目标,至今仍难以捉摸。

著录项

  • 来源
    《Nature》 |2013年第7453期|209-212|共4页
  • 作者单位

    Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA;

    Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA;

    Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA;

    Departamento de Fisica Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049, Spain;

    Department of Physics, University of Konstanz, D-78457 Konstanz, Germany;

    Departamento de Fisica Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049, Spain;

    Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA,Department of Materials Science and Engineering,University of Michigan, Ann Arbor, Michigan 48109, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号