首页> 外文期刊>Nature >Deterministic quantum teleportation of photonic quantum bits by a hybrid technique
【24h】

Deterministic quantum teleportation of photonic quantum bits by a hybrid technique

机译:光子量子位的确定性量子隐形传态

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum teleportation~1 allows for the transfer of arbitrary unknown quantum states from a sender to a spatially distant receiver, provided that the two parties share an entangled state and can communicate classically. It is the essence of many sophisticated protocols for quantum communication and computation~(2-5). Photons are an optimal choice for carrying information in the form of 'flying qubits', but the teleportation of photonic quantum bits~(6-11) (qubits) has been limited by experimental inefficiencies and restrictions. Main disadvantages include the fundamentally probabilistic nature of linear-optics Bell measurements~(12), as well as the need either to destroy the teleported qubit or attenuate the input qubit when the detectors do not resolve photon numbers~(13). Here we experimentally realize fully deterministic quantum teleportation of photonic qubits without post-selection. The key step is to make use of a hybrid technique involving continuous-variable teleportation~(14-16) of a discrete-variable, photonic qubit. When the receiver's feedforward gain is optimally tuned, the continuous-variable teleporter acts as a pure loss channel~(17,18), and the input dual-rail-encoded qubit, based on a single photon, represents a quantum error detection code against photon loss~(19) and hence remains completely intact for most teleportation events. This allows for a faithful qubit transfer even with imperfect continuous- variable entangled states: for four qubits the overall transfer fidelities range from 0.79 to 0.82 and all of them exceed the classical limit of teleportation. Furthermore, even for a relatively low level of the entanglement, qubits are teleported much more efficiently than in previous experiments, albeit post-selectively (taking into account only the qubit subspaces), and with a fidelity comparable to the previously reported values.
机译:量子隐形传态〜1允许将任意未知的量子态从发送器传输到空间遥远的接收器,只要双方共享一个纠缠态并且可以经典地通信。它是用于量子通信和计算的许多复杂协议的本质〜(2-5)。光子是以“飞行量子比特”形式携带信息的最佳选择,但是光子量子比特〜(6-11)(量子比特)的隐形传送受到实验效率低下和限制的限制。主要缺点包括线性光学贝尔测量的基本概率性质〜(12),以及当检测器无法解析光子数时(13),需要破坏传送的量子比特或衰减输入量子比特。在这里,我们通过实验实现了光子量子位的完全确定性的量子隐形传态,而无需后期选择。关键步骤是利用一种混合技术,该技术涉及离散变量光子量子位的连续可变隐形传态(14-16)。当对接收器的前馈增益进行最佳调整时,连续变量传送器将充当纯损耗信道〜(17,18),并且基于单光子的输入双轨编码量子比特表示针对光子损失〜(19),因此对于大多数隐形传态事件仍保持完好无损。即使在不完美的连续变量纠缠状态下,这也可以实现忠实的量子比特传输:对于四个量子比特,整体传输保真度范围为0.79至0.82,所有这些都超过了经典的隐形传送极限。此外,即使对于较低程度的纠缠,量子位也比以前的实验更有效地传送,尽管是选择性的(仅考虑了量子位子空间),并且保真度可与先前报告的值相媲美。

著录项

  • 来源
    《Nature》 |2013年第7462期|315-318|共4页
  • 作者单位

    Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;

    Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;

    Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;

    Institute of Physics, Johannes-Gutenberg Universitat Mainz,Staudingerweg 7, 55128 Mainz, Germany;

    Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号