首页> 外文期刊>Nature >Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
【24h】

Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage

机译:甲烷的厌氧氧化与新古菌谱系中的硝酸盐还原反应

获取原文
获取原文并翻译 | 示例
           

摘要

Anaerobic oxidation of methane (AOM) is critical for controlling the flux of methane from anoxic environments. AOM coupled to iron, manganese and sulphate reduction have been demonstrated in consortia containing anaerobic methanotrophic (ANME) archaea. More recently it has been shown that the bacterium Candidatus fMethylomirabilis oxyfera' can couple AOM to nitrite reduction through an intra-aerobic methane oxidation pathway. Bioreactors capable of AOM coupled to denitrification have resulted in the enrichment of 'M. oxyfera' and a novel ANME lineage, ANME-2d. However, as 'M. oxyfera' can independently couple AOM to denitrification, the role of ANME-2d in the process is unresolved. Here, a bioreactor fed with nitrate, ammonium and methane was dominated by a single ANME-2d population performing nitrate-driven AOM. Metagenomic, single-cell genomic and metatrans-criptomic analyses combined with bioreactor performance and ~(13)C- and ~(15)N-labelling experiments show that ANME-2d is capable of independent AOM through reverse methanogenesis using nitrate as the terminal electron acceptor. Comparative analyses reveal that the genes for nitrate reduction were transferred laterally from a bacterial donor, suggesting selection for this novel process within ANME-2d. Nitrite produced by ANME-2d is reduced to dinitrogen gas through a syntrophic relationship with an anaerobic ammonium-oxidizing bacterium, effectively outcompeting 'M. oxyfera' in the system. We propose the name Candidatus 'Methanoperedens nitror-educens' for the ANME-2d population and the family Candidatus 'Methanoperedenaceae' for the ANME-2d lineage. We predict that 'M. nitroreducens' and other members of the 'Methanoperedenaceae' have an important role in linking the global carbon and nitrogen cycles in anoxic environments.
机译:甲烷的厌氧氧化(AOM)对于控制来自缺氧环境的甲烷流量至关重要。 AOM与铁,锰和硫酸盐的还原相结合已在含有厌氧性甲烷营养菌(ANME)的古菌中得到证实。最近已经显示,细菌念珠菌fMethylomirabilis oxyfera'可以通过需氧甲烷内氧化途径将AOM与亚硝酸盐还原反应耦合。能够AOM结合反硝化作用的生物反应器导致'M的富集。 oxyfera'和新型ANME血统ANME-2d。然而,作为'M。 oxyfera'可以独立地将AOM耦合到反硝化过程,而ANME-2d在该过程中的作用尚未确定。在这里,以硝酸盐,铵和甲烷为原料的生物反应器被执行硝酸盐驱动的AOM的单个ANME-2d种群所控制。荟萃基因组学,单细胞基因组和荟萃转录组学分析与生物反应器性能以及〜(13)C-和〜(15)N标记实验相结合,表明ANME-2d能够通过反硝化作用使用硝酸盐作为末端电子来独立进行AOM受体。比较分析表明,硝酸盐还原的基因从细菌供体侧向转移,这表明在ANME-2d中选择了这种新方法。 ANME-2d产生的亚硝酸盐通过与厌氧铵氧化细菌的同养关系被还原为氮气,有效地胜过了'M。在系统中。我们为ANME-2d种群命名假丝酵母“ Methanoperedennitroor-educens”,为ANME-2d种群命名假丝酵母“ Methanoperedenaceae”。我们预测'M。硝态还原菌”和“甲烷单菌纲”的其他成员在联系缺氧环境中的全球碳和氮循环中起着重要作用。

著录项

  • 来源
    《Nature》 |2013年第7464期|567-570|共4页
  • 作者单位

    Australian Centre for Ecogenomics,School of Chemistry and Molecular Biosciences,The University of Queensland,Brisbane,Queensland 4072,Australia;

    Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia;

    Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia;

    Australian Centre for Ecogenomics,School of Chemistry and Molecular Biosciences,The University of Queensland,Brisbane,Queensland 4072,Australia Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia;

    Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia;

    Australian Centre for Ecogenomics,School of Chemistry and Molecular Biosciences,The University of Queensland,Brisbane,Queensland 4072,Australia Institute for Molecular Bioscience. The University of Queensland, Brisbane. Queensland 4072, Australia;

    Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia;

    Australian Centre for Ecogenomics,School of Chemistry and Molecular Biosciences,The University of Queensland,Brisbane,Queensland 4072,Australia Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Queensland 4072, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号