首页> 外文期刊>Nature >Enhanced reversibility and unusual microstructure of a phase-transforming material
【24h】

Enhanced reversibility and unusual microstructure of a phase-transforming material

机译:相变材料增强的可逆性和异常的微观结构

获取原文
获取原文并翻译 | 示例
           

摘要

Materials undergoing reversible solid-to-solid martensitic phase transformations are desirable for applications in medical sensors and actuators, eco-friendly refrigerators and energy conversion devices. The ability to pass back and forth through the phase transformation many times without degradation of properties (termed 'Reversibility') is critical for these applications. Materials tuned to satisfy a certain geometric compatibility condition have been shown to exhibit high reversibility, measured by low hysteresis and small migration of transformation temperature under cycling. Recently, stronger compatibility conditions called the 'cofactor conditions' have been proposed theoretically to achieve even better reversibility. Here we report the enhanced reversibility and unusual microstructure of the first martensitic material, Zn_(45)Au_(30)Cu_(25), that closely satisfies the cofactor conditions. We observe four striking properties of this material. (1) Despite a transformation strain of 8%, the transformation temperature shifts less than 0.5 ℃ after more than 16,000 thermal cycles. For comparison, the transformation temperature of the ubiquitous NiTi alloy shifts up to 20 ℃ in the first 20 cycles. (2) The hysteresis remains approximately 2 ℃ during this cycling. For comparison, the hysteresis of the NiTi alloy is up to 70 ℃ (refs 9, 12). (3) The alloy exhibits an unusual riverine microstructure of martensite not seen in other martensites. (4) Unlike that of typical polycrystal martensites, its microstructure changes drastically in consecutive transformation cycles, whereas macroscopic properties such as transformation temperature and latent heat are nearly reproducible. These results promise a concrete strategy for seeking ultra-reliable martensitic materials.
机译:经历可逆固-固马氏体相变的材料对于医疗传感器和执行器,环保冰箱和能量转换设备中的应用是理想的。对于这些应用而言,能够多次来回传递相变而不会降低性能(称为“可逆性”)的能力至关重要。经调整以满足某种几何相容性条件的材料已显示出高可逆性,可通过低磁滞和循环中相变温度的小迁移来测量。最近,理论上提出了更强的相容性条件,称为“辅因子条件”,以实现更好的可逆性。在这里,我们报告了第一马氏体材料Zn_(45)Au_(30)Cu_(25)的增强的可逆性和不寻常的微观结构,其非常满足辅因子条件。我们观察到这种材料的四个惊人特性。 (1)尽管有8%的转变应变,但经过超过16,000个热循环后,转变温度的变化小于0.5℃。为了进行比较,在最初的20个循环中,无处不在的NiTi合金的转变温度最高可升高20℃。 (2)在此循环过程中,磁滞保持约2℃。为了进行比较,NiTi合金的磁滞高达70℃(参考文献9、12)。 (3)合金具有其他马氏体中未见的异常的马氏体河沿微结构。 (4)与典型的多晶马氏体不同,它的微观结构在连续的转变循环中急剧变化,而宏观性质如转变温度和潜热几乎可以再现。这些结果有望成为寻求​​超可靠马氏体材料的具体策略。

著录项

  • 来源
    《Nature》 |2013年第7469期|85-88|共4页
  • 作者单位

    Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA;

    Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA;

    Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA;

    Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA;

    Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号