首页> 外文期刊>Nature >Collective bulk carrier delocalization driven by electrostatic surface charge accumulation
【24h】

Collective bulk carrier delocalization driven by electrostatic surface charge accumulation

机译:静电表面电荷的积累驱动集体载流子的离域

获取原文
获取原文并翻译 | 示例
           

摘要

In the classic transistor, the number of electric charge carriers— and thus the electrical conductivity—is precisely controlled by external voltage, providing electrical switching capability. This simple but powerful feature is essential for information processing technology, and also provides a platform for fundamental physics research~(1-16). As the number of charges essentially determines the electronic phase of a condensed-matter system, transistor operation enables reversible and isothermal changes in the system's state, as successfully demonstrated in electric-field-induced ferro-magnetism~(2-4) and superconductivity~(5-10). However, this effect of the electric field is limited to a channel thickness of nanometres or less, owing to the presence of Thomas-Fermi screening. Here we show that this conventional picture does not apply to a class of materials characterized by inherent collective interactions between electrons and the crystal lattice. We prepared metal-insulator-semiconductor field-effect transistors based on vanadium dioxide—a strongly correlated material with a thermally driven, first-order metal-insulator transition well above room temperature~(17-23)—and found that electrostatic charging at a surface drives all the previously localized charge carriers in the bulk material into motion, leading to the emergence of a three-dimensional metallic ground state. This non-local switching of the electronic state is achieved by applying a voltage of only about one volt. In a voltage-sweep measurement, the first-order nature of the metal-insulator transition provides a non-volatile memory effect, which is operable at room temperature. Our results demonstrate a conceptually new field-effect device, extending the concept of electric-field control to macroscopic phase control.
机译:在经典晶体管中,电荷载流子的数量(进而是电导率)由外部电压精确控制,从而提供电开关能力。这个简单而强大的功能对于信息处理技术必不可少,也为基础物理研究提供了一个平台(1-16)。由于电荷的数量基本上决定了凝聚态系统的电子相,晶体管的运行使系统状态发生可逆和等温变化,这在电场感应的铁磁性(2-4)和超导性中已得到成功证明。 (5-10)。然而,由于存在托马斯-费米(Thomas-Fermi)屏蔽,电场的这种作用被限制在纳米或更小的通道厚度。在这里,我们表明,这种常规图像不适用于以电子与晶格之间固有的固有相互作用为特征的一类材料。我们准备了基于二氧化钒的金属绝缘体半导体场效应晶体管。二氧化钒是一种强相关材料,具有热驱动的一阶金属绝缘体,其转变温度远高于室温((17-23)),并且发现在表面驱动散装材料中所有先前定位的电荷载流子运动,从而导致三维金属基态的出现。通过仅施加约一伏的电压来实现电子状态的这种非本地切换。在电压扫描中,金属-绝缘体过渡的一阶性质提供了非易失性存储效应,该效应可在室温下运行。我们的结果证明了一种概念上新颖的场效应器件,将电场控制的概念扩展到了宏观相位控制。

著录项

  • 来源
    《Nature》 |2012年第7408期|p.459-462|共4页
  • 作者单位

    Correlated Electron Research Group (CERG) and Cross-correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako 351-0198, Japan;

    Correlated Electron Research Group (CERG) and Cross-correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako 351-0198, Japan,Present address: Correlated Electronics Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan;

    Correlated Electron Research Group (CERG) and Cross-correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako 351-0198, Japan;

    Correlated Electron Research Group (CERG) and Cross-correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako 351-0198, Japan;

    Correlated Electron Research Group (CERG) and Cross-correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako 351-0198, Japan,Central Research Institute of Electric Power Industry, Komae 201-8511, Japan;

    Correlated Electron Research Group (CERG) and Cross-correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako 351-0198, Japan,Quantum-Phase Electronics Center and Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan;

    Correlated Electron Research Group (CERG) and Cross-correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako 351-0198, Japan,Quantum-Phase Electronics Center and Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan;

    Correlated Electron Research Group (CERG) and Cross-correlated Materials Research Group (CMRG), RIKEN Advanced Science Institute, Wako 351-0198, Japan,Quantum-Phase Electronics Center and Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号