首页> 外文期刊>Nature >Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength
【24h】

Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength

机译:通过降频转换为电信波长实现量子点自旋光子纠缠

获取原文
获取原文并翻译 | 示例
           

摘要

未来的量子网络将把处于静止状态的量子位rn(如单电子自旋)与“飞行”的量子位(在远距rn离量子位之间转移量子态的光子)理想地结合rn在一起。因此,量子计算和通信领域一个长期rn未能解决的挑战便是,在一个固体平台上将一rn个单电子自旋耦合到一个单光子上。现在,两rn个独立工作的小组通过演示束缚在一个半导体rn“量子点”结构中的一个光子和一个单电子自rn旋之间的纠缠实现了这一目标。该量子点起静rn止节点的作用。这一成果是向最终实现能够进rn行远距离量子通信的量子网络的目标所迈出的rn一小步。%Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency down-conversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates1112, the present technique advances the Ⅲ-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency down-conversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.
机译:未来的量子网络将把处于静止状态的量子位rn(如单电子自旋)与“飞行”的量子位(在远距rn离量子位之间转移量子态的光子)理想地结合rn在一起。因此,量子计算和通信领域一个长期rn未能解决的挑战便是,在一个固体平台上将一rn个单电子自旋耦合到一个单光子上。现在,两rn个独立工作的小组通过演示束缚在一个半导体rn“量子点”结构中的一个光子和一个单电子自rn旋之间的纠缠实现了这一目标。该量子点起静rn止节点的作用。这一成果是向最终实现能够进rn行远距离量子通信的量子网络的目标所迈出的rn一小步。%Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency down-conversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates1112, the present technique advances the Ⅲ-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency down-conversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

著录项

  • 来源
    《Nature》 |2012年第7424期|p.421-425a3|共6页
  • 作者单位

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA, Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA;

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA,Scottish Universities Physics Alliance and School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH 14 4AS, UK;

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA,National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8403, Japan;

    Technische Physik, Physikalisches Institut, Wilhelm Conrad Rontgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany;

    Technische Physik, Physikalisches Institut, Wilhelm Conrad Rontgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany;

    Technische Physik, Physikalisches Institut, Wilhelm Conrad Rontgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany;

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA,Technische Physik, Physikalisches Institut, Wilhelm Conrad Rontgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany;

    Scottish Universities Physics Alliance and School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH 14 4AS, UK;

    Technische Physik, Physikalisches Institut, Wilhelm Conrad Rontgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany;

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA,National Institute of Informatics, Hitotsubashi 2-1-2, Chiyoda-ku, Tokyo 101-8403, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号