首页> 外文期刊>Nature >Water structural transformation at molecular hydrophobic interfaces
【24h】

Water structural transformation at molecular hydrophobic interfaces

机译:分子疏水界面的水结构转变

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrophobic hydration is considered to have a key role in biological processes ranging from membrane formation to protein folding and ligand binding1. Historically, hydrophobic hydration shells were thought to resemble solid clathrate hydrates, with solutes surrounded by polyhedral cages composed of tetrahedrally hydrogen-bonded water molecules. But more recent experimental and theoretical studies have challenged this view and emphasized the importance of the length scales involved. Here we report combined polarized, isotopic and temperature-dependent Raman scattering measurements with multivariate curve resolution (Raman-MCR) that explore hydrophobic hydration by mapping the vibrational spec-troscopic features arising from the hydrophobic hydration shells of linear alcohols ranging from methanol to heptanol. Our data, covering the entire 0-100 ℃ temperature range, show clear evidence that at low temperatures the hydration shells have a hydrophobically enhanced water structure with greater tetrahedral order and fewer weak hydrogen bonds than the surrounding bulk water. This structure disappears with increasing temperature and is then, for hydrophobic chains longer than ~1 nm, replaced by a more disordered structure with weaker hydrogen bonds than bulk water. These observations support our current understanding of hydrophobic hydration, including the thermally induced water structural transformation that is suggestive of the hydrophobic crossover predicted to occur at lengths of ~1 nm (refs 5, 9,10,14).
机译:疏水水合被认为在从膜形成到蛋白质折叠和配体结合等生物过程中具有关键作用1。从历史上看,疏水性水合壳被认为类似于固体笼形水合物,溶质被四面体氢键结合的水分子组成的多面体笼包围。但是,最近的实验和理论研究对这一观点提出了挑战,并强调了所涉及的长度标尺的重要性。在这里,我们报告了极化,同位素和温度相关的拉曼散射测量结果与多元曲线分辨率(Raman-MCR)的关系,该曲线图通过绘制由线性醇(从甲醇到庚醇)的疏水水合壳形成的振动光谱特征来探索疏水水合。我们的数据涵盖了整个0-100℃的温度范围,清楚地表明,在低温下,水合壳具有疏水性增强的水结构,与周围的大量水相比,四面体的阶数更大,氢键更弱。这种结构随着温度的升高而消失,然后,对于长于〜1 nm的疏水链,被氢原子强度比散装水弱的无序结构所取代。这些观察结果支持了我们目前对疏水水合的理解,包括热诱导的水结构转变,这暗示了预计在〜1 nm长度处发生的疏水交换(参考文献5、9、10、14)。

著录项

  • 来源
    《Nature》 |2012年第7425期|p.582-585|共4页
  • 作者单位

    Purdue University, Department of Chemistry, West Lafayette, Indiana 47907, USA;

    Purdue University, Department of Chemistry, West Lafayette, Indiana 47907, USA;

    Purdue University, Department of Chemistry, West Lafayette, Indiana 47907, USA;

    Purdue University, Department of Chemistry, West Lafayette, Indiana 47907, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号