首页> 外文期刊>Nature >Linking synchronization to self-assembly using magnetic Janus colloids
【24h】

Linking synchronization to self-assembly using magnetic Janus colloids

机译:使用磁性Janus胶体将同步链接到自组装

获取原文
获取原文并翻译 | 示例
           

摘要

Synchronization occurs widely in the natural and technological worlds, from the rhythm of applause and neuron firing to the quantum mechanics of coupled Josephson junctions, but has not been used to produce new spatial structures. Our understanding of self-assembly has evolved independently in the fields of chemistry and materials, and with a few notable exceptions has focused on equilibrium rather than dynamical systems. Here we combine these two phenomena to create synchronization-selected microtubes of Janus colloids, micron-sized spherical particles with different surface chemistry on their opposing hemispheres, which we study using imaging and computer simulation. A thin nickel film coats one hemisphere of each silica particle to generate a discoid magnetic symmetry, such that in a precessing magnetic field its dynamics retain crucial phase freedom. Synchronizing their motion, these Janus spheres self-organize into micrometre-scale tubes in which the constituent particles rotate and oscillate continuously. In addition, the microtube must be tidally locked to the particles, that is, the particles must maintain their orientation within the rotating microtube. This requirement leads to a synchronization-induced structural transition that offers various applications based on the potential to form, disintegrate and fine-tune self-assembled in-motion structures in situ. Furthermore, it offers a generalizable method of controlling structure using dynamic synchronization criteria rather than static energy minimization, and of designing new field-driven microscale devices in which components do not slavishly follow the external field.
机译:从掌声和神经元激发的节奏到耦合的约瑟夫森结的量子力学,在自然界和技术界中广泛发生同步,但尚未用于产生新的空间结构。我们对自组装的理解是在化学和材料领域独立发展的,除少数值得注意的例外,它的重点是平衡而不是动力系统。在这里,我们结合这两种现象来创建同步选择的Janus胶体微管,这些微管是在其相对的半球上具有不同表面化学性质的微米级球形颗粒,我们使用成像和计算机模拟对其进行研究。一薄层镍膜覆盖每个二氧化硅颗粒的一个半球,以产生盘状磁对称性,因此在进动磁场中,其动力学保持关键的相自由度。这些Janus球同步运动,自组织成微米级的管,其中的组成粒子不断旋转并振荡。另外,微管必须在潮汐上锁定到颗粒上,也就是说,颗粒必须在旋转的微管内保持其取向。这项要求导致了由同步引起的结构转换,该转换提供了基于在原位形成,分解和微调自组装运动结构的潜力的各种应用。此外,它提供了一种通用的方法,该方法使用动态同步标准而不是最小化静态能量最小化来控制结构,以及设计一种新的现场驱动式微型设备,其中组件无需严格遵循外部领域。

著录项

  • 来源
    《Nature》 |2012年第7425期|p.578-581|共4页
  • 作者单位

    Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;

    Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA;

    Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA,Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA;

    Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA,Department of Physics, University of Illinois, Urbana, Illinois 61801, USA,Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号