首页> 外文期刊>Nature >Controlled-reflectance surfaces with film-coupled colloidal nanoantennas
【24h】

Controlled-reflectance surfaces with film-coupled colloidal nanoantennas

机译:薄膜耦合胶体纳米天线的可控反射面

获取原文
获取原文并翻译 | 示例
           

摘要

Efficient and tunable absorption is essential for a variety of applications, such as designing controlled-emissivity surfaces for thermo-photovoltaic devices, tailoring an infrared spectrum for controlled thermal dissipation and producing detector elements for imaging. Metamaterials based on metallic elements are particularly efficient as absorbing media, because both the electrical and the magnetic properties of a metamaterial can be tuned by structured design. So far, metamaterial absorbers in the infrared or visible range have been fabricated using lithographically patterned metallic structures, making them inherently difficult to produce over large areas and hence reducing their applicability. Here we demonstrate a simple method to create a metamaterial absorber by randomly adsorbing chemically synthesized silver nanocubes onto a nanoscale-thick polymer spacer layer on a gold film, making no effort to control the spatial arrangement of the cubes on the film. We show that the film-coupled nanocubes provide a reflectance spectrum that can be tailored by varying the geometry (the size of the cubes and/or the thickness of the spacer). Each nanocube is the optical analogue of a grounded patch antenna, with a nearly identical local field structure that is modified by the plasmonic response of the metal's dielectric function, and with an anomalously large absorption efficiency that can be partly attributed to an interferometric effect. The absorptivity of large surface areas can be controlled using this method, at scales out of reach of lithographic approaches (such as electron-beam lithography) that are otherwise required to manipulate matter on the nanoscale.
机译:高效且可调的吸收对于多种应用至关重要,例如设计用于热光伏设备的受控发射率表面,定制红外光谱以控制受控散热并产生用于成像的检测器元件。基于金属元素的超材料作为吸收介质特别有效,因为超材料的电和磁特性都可以通过结构化设计进行调整。迄今为止,已经使用光刻图案化的金属结构制造了红外或可见光范围的超材料吸收体,这使其固有地难以在大面积上生产,因此降低了其适用性。在这里,我们演示了一种简单的方法,可通过将化学合成的银纳米立方体随机吸附到金膜上的纳米级聚合物间隔层上来创建超材料吸收体,而无需努力控制立方体在膜上的空间排列。我们表明,薄膜耦合的纳米立方体提供了可以通过改变几何形状(立方体的大小和/或间隔物的厚度)来定制的反射光谱。每个纳米立方体都是接地贴片天线的光学类似物,具有几乎相同的局部场结构,该结构通过金属介电功能的等离子体响应进行了修改,并且具有异常大的吸收效率,这可以部分归因于干涉效应。可以使用此方法控制大表面积的吸收率,而在光刻方法(例如电子束光刻)所无法达到的范围内,否则需要在纳米级上操作物质。

著录项

  • 来源
    《Nature》 |2012年第7427期|86-89|共4页
  • 作者单位

    Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708, USA,Clermont Universite, Universite Blaise Pascal, Institut Pascal, BP 10448,63000 Clermont-Ferrand, France,CNRS, UMR 6602, IP, 63171 Aubiere, France;

    Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708, USA;

    Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708, USA;

    Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, North Carolina, 27708, USA;

    Department of Chemistry, Duke University, Durham, North Carolina 27708, USA,laboratory for Micro-sized Functional Materials & College of Elementary Education, Capital Normal University, Beijing 100048, China;

    Department of Chemistry, Duke University, Durham, North Carolina 27708, USA;

    Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, North Carolina, 27708, USA,Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA;

    Center for Metamaterials and Integrated Plasmonics, Duke University, Durham, North Carolina 27708, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号