首页> 外文期刊>Nature >Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis
【24h】

Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis

机译:剪接U4 snRNP核心域的结构及其对snRNP生物发生的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The spliceosome is a dynamic macromolecular machine that assembles on pre-messenger RNA substrates and catalyses the excision of non-coding intervening sequences (introns). Four of the five major components of the spliceosome, U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), contain seven Sm proteins (SmB/B', SmD1, SmD2, SmD3, SmE, SmF and SmG) in common. Following export of the Ul, U2, U4 and U5 snRNAs to the cytoplasm, the seven Sm proteins, chaperoned by the survival of motor neurons (SMN) complex, assemble around a single-stranded, U-rich sequence called the Sm site in each small nuclear RNA (snRNA), to form the core domain of the respective snRNP particle8'9. Core domain formation is a prerequisite for re-import into the nucleus10, where these snRNPs mature via addition of their particle-specific proteins. Here we present a crystal structure of the U4 snRNP core domain at 3.6 A resolution, detailing how the Sm site heptad (AUUUUUG) binds inside the central hole of the heptameric ring of Sm proteins, interacting one-to-one with SmE-SmG-SmD3-SmB-SmDl-SmD2-SmF. An irregular backbone conformation of the Sm site sequence combined with the asymmetric structure of the heteromeric protein ring allows each base to interact in a distinct manner with four key residues at equivalent positions in the L3 and L5 loops of the Sm fold. A comparison of this structure with the Ul snRNP at 5.5 A resolution11'12 reveals snRNA-dependent structural changes outside the Sm fold, which may facilitate the binding of particle-specific proteins that are crucial to biogenesis of spliceosomal snRNPs.
机译:剪接体是动态的大分子机器,其在信使前RNA底物上组装并催化非编码插入序列(内含子)的切除。剪接体的五个主要成分中的四个,U1,U2,U4和U5小核糖核糖核蛋白(snRNP)共同包含七个Sm蛋白(SmB / B',SmD1,SmD2,SmD3,SmE,SmF和SmG)。在将Ul,U2,U4和U5 snRNA输出到细胞质后,七个Sm蛋白受到运动神经元(SMN)复合体存活的监护,并围绕着一个单链富U序列(称为Sm位点)组装小核RNA(snRNA),形成各自snRNP颗粒的核心结构域8'9。核心结构域的形成是重新导入核10的先决条件,在这些核中,这些snRNP通过添加其颗粒特异性蛋白质而成熟。在这里,我们介绍了分辨率为3.6 A的U4 snRNP核心域的晶体结构,详细介绍了Sm位点七肽(AUUUUUG)如何与Sm蛋白七聚体环的中心孔结合,并与SmE-SmG- SmD3-SmB-SmD1-SmD2-SmF。 Sm位点序列的不规则骨架构象与异聚蛋白环的不对称结构相结合,使每个碱基可以以不同的方式与Sm折叠L3和L5环中相同位置的四个关键残基相互作用。在5.5 A分辨率下,此结构与Ul snRNP的比较11'12揭示了Sm折叠以外的snRNA依赖性结构变化,这可能有助于结合颗粒特异性蛋白质,这对于剪接体snRNP的生物发生至关重要。

著录项

  • 来源
    《Nature》 |2011年第7348期|p.536-539|共4页
  • 作者单位

    Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA;

    MRC Laboratory of Molecular Biology, Hiils Road, Cambridge CB2 OQH, UK;

    MRC Laboratory of Molecular Biology, Hiils Road, Cambridge CB2 OQH, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号